
Package ‘rpact’
January 25, 2024

Title Confirmatory Adaptive Clinical Trial Design and Analysis

Version 3.5.0

Date 2024-01-25

Description Design and analysis of confirmatory adaptive clinical trials with continuous, bi-
nary, and survival endpoints according to the methods described in the monograph by Wass-
mer and Brannath (2016) <doi:10.1007/978-3-319-32562-0>. This includes classical group se-
quential as well as multi-stage adaptive hypotheses tests that are based on the combination test-
ing principle.

License LGPL-3

Encoding UTF-8

LazyData true

URL https://www.rpact.org,

https://www.rpact.com,

https://github.com/rpact-com/rpact,

https://rpact-com.github.io/rpact/

BugReports https://github.com/rpact-com/rpact/issues

Language en-US

Depends R (>= 3.6.0)

Imports methods,
stats,
utils,
graphics,
tools,
rlang,
knitr (>= 1.19),
Rcpp (>= 1.0.3)

LinkingTo Rcpp

Suggests ggplot2 (>= 2.2.0),
testthat (>= 3.0.0),
rmarkdown (>= 1.10)

VignetteBuilder knitr, rmarkdown

RoxygenNote 7.3.1

Roxygen list(markdown = TRUE)

1

https://doi.org/10.1007/978-3-319-32562-0
https://www.rpact.org
https://www.rpact.com
https://github.com/rpact-com/rpact
https://rpact-com.github.io/rpact/
https://github.com/rpact-com/rpact/issues

2

Config/testthat/edition 3

Config/testthat/parallel true

Config/testthat/start-first *analysis*

Collate 'RcppExports.R'
'f_logger.R'
'f_core_constants.R'
'f_core_utilities.R'
'f_core_assertions.R'
'f_analysis_utilities.R'
'f_parameter_set_utilities.R'
'class_core_parameter_set.R'
'class_core_plot_settings.R'
'f_core_plot.R'
'class_design.R'
'f_object_r_code.R'
'f_analysis_base.R'
'class_analysis_dataset.R'
'class_analysis_stage_results.R'
'class_analysis_results.R'
'f_design_general_utilities.R'
'class_time.R'
'class_design_set.R'
'class_design_plan.R'
'class_design_power_and_asn.R'
'class_event_probabilities.R'
'f_simulation_utilities.R'
'f_simulation_base_survival.R'
'class_simulation_results.R'
'class_performance_score.R'
'class_summary.R'
'data.R'
'f_analysis_base_means.R'
'f_analysis_base_rates.R'
'f_analysis_base_survival.R'
'f_analysis_enrichment.R'
'f_analysis_enrichment_means.R'
'f_analysis_enrichment_rates.R'
'f_analysis_enrichment_survival.R'
'f_analysis_multiarm.R'
'f_analysis_multiarm_means.R'
'f_analysis_multiarm_rates.R'
'f_analysis_multiarm_survival.R'
'f_as251.R'
'f_core_output_formats.R'
'f_design_fisher_combination_test.R'
'f_design_group_sequential.R'
'f_design_plan_count_data.R'
'f_design_plan_means.R'
'f_design_plan_plot.R'
'f_design_plan_rates.R'
'f_design_plan_survival.R'
'f_design_plan_utilities.R'

R topics documented: 3

'f_quality_assurance.R'
'f_simulation_base_means.R'
'f_simulation_base_rates.R'
'f_simulation_calc_subjects_function.R'
'f_simulation_enrichment.R'
'f_simulation_enrichment_means.R'
'f_simulation_enrichment_rates.R'
'f_simulation_enrichment_survival.R'
'f_simulation_multiarm.R'
'f_simulation_multiarm_means.R'
'f_simulation_multiarm_rates.R'
'f_simulation_multiarm_survival.R'
'f_simulation_performance_score.R'
'f_simulation_plot.R'
'parameter_descriptions.R'
'pkgname.R'

R topics documented:
AccrualTime . 9
AnalysisResults . 10
AnalysisResultsConditionalDunnett . 10
AnalysisResultsEnrichment . 11
AnalysisResultsEnrichmentFisher . 12
AnalysisResultsEnrichmentInverseNormal . 13
AnalysisResultsFisher . 14
AnalysisResultsGroupSequential . 16
AnalysisResultsInverseNormal . 17
AnalysisResultsMultiArm . 18
AnalysisResultsMultiArmFisher-class . 19
AnalysisResultsMultiArmInverseNormal . 20
AnalysisResultsMultiHypotheses . 21
as.data.frame.AnalysisResults . 22
as.data.frame.ParameterSet . 22
as.data.frame.PowerAndAverageSampleNumberResult 23
as.data.frame.StageResults . 24
as.data.frame.TrialDesign . 25
as.data.frame.TrialDesignCharacteristics . 26
as.data.frame.TrialDesignPlan . 27
as.data.frame.TrialDesignSet . 28
as.matrix.FieldSet . 29
as251Normal . 29
as251StudentT . 30
ClosedCombinationTestResults . 31
ConditionalPowerResults . 32
ConditionalPowerResultsEnrichmentMeans . 32
ConditionalPowerResultsEnrichmentRates . 33
ConditionalPowerResultsMeans . 34
ConditionalPowerResultsRates . 34
ConditionalPowerResultsSurvival . 35
dataEnrichmentMeans . 36
dataEnrichmentMeansStratified . 36

4 R topics documented:

dataEnrichmentRates . 36
dataEnrichmentRatesStratified . 37
dataEnrichmentSurvival . 37
dataEnrichmentSurvivalStratified . 37
dataMeans . 38
dataMultiArmMeans . 38
dataMultiArmRates . 38
dataMultiArmSurvival . 39
dataRates . 39
Dataset . 39
DatasetMeans . 40
DatasetRates . 40
DatasetSurvival . 41
dataSurvival . 42
EventProbabilities . 42
FieldSet . 43
getAccrualTime . 43
getAnalysisResults . 46
getClosedCombinationTestResults . 51
getClosedConditionalDunnettTestResults . 52
getConditionalPower . 54
getConditionalRejectionProbabilities . 56
getData . 57
getDataset . 59
getDesignCharacteristics . 64
getDesignConditionalDunnett . 65
getDesignFisher . 66
getDesignGroupSequential . 68
getDesignInverseNormal . 71
getDesignSet . 74
getEventProbabilities . 76
getFinalConfidenceInterval . 78
getFinalPValue . 80
getGroupSequentialProbabilities . 81
getLambdaStepFunction . 83
getLogLevel . 84
getLongFormat . 85
getNumberOfSubjects . 85
getObservedInformationRates . 87
getOutputFormat . 88
getParameterCaption . 90
getParameterName . 90
getPerformanceScore . 91
getPiecewiseSurvivalTime . 92
getPlotSettings . 95
getPowerAndAverageSampleNumber . 96
getPowerCounts . 97
getPowerMeans . 100
getPowerRates . 102
getPowerSurvival . 105
getRawData . 110
getRepeatedConfidenceIntervals . 112

R topics documented: 5

getRepeatedPValues . 114
getSampleSizeCounts . 115
getSampleSizeMeans . 118
getSampleSizeRates . 120
getSampleSizeSurvival . 122
getSimulationEnrichmentMeans . 128
getSimulationEnrichmentRates . 133
getSimulationEnrichmentSurvival . 137
getSimulationMeans . 141
getSimulationMultiArmMeans . 146
getSimulationMultiArmRates . 152
getSimulationMultiArmSurvival . 156
getSimulationRates . 161
getSimulationSurvival . 166
getStageResults . 177
getTestActions . 179
getWideFormat . 180
kable . 181
kable.ParameterSet . 181
knit_print.ParameterSet . 182
knit_print.SummaryFactory . 182
length.TrialDesignSet . 183
mvnprd . 183
mvstud . 184
names.AnalysisResults . 185
names.FieldSet . 186
names.SimulationResults . 186
names.StageResults . 187
names.TrialDesignSet . 187
NumberOfSubjects . 188
ParameterSet . 188
param_accrualIntensity . 188
param_accrualIntensityType . 189
param_accrualIntensity_counts . 189
param_accrualTime . 189
param_accrualTime_counts . 190
param_activeArms . 190
param_adaptations . 190
param_allocationRatioPlanned . 191
param_allocationRatioPlanned_sampleSize . 191
param_alpha . 191
param_alternative . 192
param_alternative_simulation . 192
param_beta . 192
param_bindingFutility . 193
param_calcEventsFunction . 193
param_calcSubjectsFunction . 193
param_conditionalPower . 194
param_conditionalPowerSimulation . 194
param_dataInput . 194
param_design . 195
param_design_with_default . 195

6 R topics documented:

param_digits . 195
param_directionUpper . 195
param_dropoutRate1 . 196
param_dropoutRate2 . 196
param_dropoutTime . 196
param_effectList . 196
param_effectMatrix . 197
param_effectMeasure . 197
param_epsilonValue . 197
param_eventTime . 197
param_fixedExposureTime_counts . 198
param_followUpTime_counts . 198
param_gED50 . 198
param_grid . 199
param_groups . 199
param_hazardRatio . 199
param_includeAllParameters . 200
param_informationEpsilon . 200
param_informationRates . 200
param_intersectionTest_Enrichment . 201
param_intersectionTest_MultiArm . 201
param_kappa . 201
param_kMax . 202
param_lambda1 . 202
param_lambda1_counts . 202
param_lambda2 . 202
param_lambda2_counts . 203
param_lambda_counts . 203
param_legendPosition . 203
param_maxInformation . 204
param_maxNumberOfEventsPerStage . 204
param_maxNumberOfIterations . 204
param_maxNumberOfSubjects . 205
param_maxNumberOfSubjectsPerStage . 205
param_maxNumberOfSubjects_survival . 205
param_median1 . 206
param_median2 . 206
param_minNumberOfEventsPerStage . 206
param_minNumberOfSubjectsPerStage . 207
param_niceColumnNamesEnabled . 207
param_nMax . 207
param_normalApproximation . 208
param_nPlanned . 208
param_overdispersion_counts . 208
param_palette . 209
param_pi1_rates . 209
param_pi1_survival . 209
param_pi2_rates . 209
param_pi2_survival . 210
param_piecewiseSurvivalTime . 210
param_plannedEvents . 210
param_plannedSubjects . 211

R topics documented: 7

param_plotPointsEnabled . 211
param_plotSettings . 211
param_populations . 212
param_rValue . 212
param_seed . 212
param_selectArmsFunction . 212
param_selectPopulationsFunction . 213
param_showSource . 213
param_showStatistics . 213
param_sided . 214
param_slope . 214
param_stage . 214
param_stageResults . 214
param_stDev . 215
param_stDevH1 . 215
param_stDevSimulation . 215
param_stratifiedAnalysis . 216
param_successCriterion . 216
param_theta . 216
param_thetaH0 . 217
param_thetaH1 . 217
param_theta_counts . 217
param_three_dots . 218
param_three_dots_plot . 218
param_threshold . 218
param_tolerance . 218
param_typeOfComputation . 219
param_typeOfDesign . 219
param_typeOfSelection . 219
param_typeOfShape . 220
param_userAlphaSpending . 220
param_varianceOption . 221
PerformanceScore . 221
PiecewiseSurvivalTime . 221
plot.AnalysisResults . 222
plot.Dataset . 225
plot.EventProbabilities . 226
plot.NumberOfSubjects . 228
plot.ParameterSet . 230
plot.SimulationResults . 231
plot.StageResults . 233
plot.SummaryFactory . 236
plot.TrialDesign . 237
plot.TrialDesignPlan . 239
plot.TrialDesignSet . 242
PlotSettings . 244
plotTypes . 245
PowerAndAverageSampleNumberResult . 246
print.Dataset . 247
print.FieldSet . 247
print.ParameterSet . 248
print.SimulationResults . 248

8 R topics documented:

print.SummaryFactory . 249
print.TrialDesignCharacteristics . 249
printCitation . 250
rawDataTwoArmNormal . 250
rcmd . 251
readDataset . 252
readDatasets . 254
resetLogLevel . 256
rpact . 256
setLogLevel . 257
setOutputFormat . 258
SimulationResults . 260
SimulationResultsEnrichmentMeans . 261
SimulationResultsEnrichmentRates . 263
SimulationResultsEnrichmentSurvival . 265
SimulationResultsMeans . 267
SimulationResultsMultiArmMeans . 268
SimulationResultsMultiArmRates . 270
SimulationResultsMultiArmSurvival . 272
SimulationResultsRates . 274
SimulationResultsSurvival . 276
StageResults . 278
StageResultsEnrichmentMeans . 279
StageResultsEnrichmentRates . 280
StageResultsEnrichmentSurvival . 281
StageResultsMeans . 281
StageResultsMultiArmMeans . 282
StageResultsMultiArmRates . 284
StageResultsMultiArmSurvival . 285
StageResultsRates . 286
StageResultsSurvival . 287
summary.AnalysisResults . 288
summary.Dataset . 289
summary.ParameterSet . 290
summary.TrialDesignSet . 292
SummaryFactory . 293
t,FieldSet-method . 293
testPackage . 294
test_plan_section . 295
TrialDesign . 295
TrialDesignCharacteristics . 296
TrialDesignConditionalDunnett . 297
TrialDesignFisher . 298
TrialDesignGroupSequential . 299
TrialDesignInverseNormal . 300
TrialDesignPlan . 302
TrialDesignPlanCountData . 302
TrialDesignPlanMeans . 304
TrialDesignPlanRates . 306
TrialDesignPlanSurvival . 307
TrialDesignSet . 310
utilitiesForPiecewiseExponentialDistribution . 311

AccrualTime 9

utilitiesForSurvivalTrials . 313
writeDataset . 314
writeDatasets . 315
[,TrialDesignSet-method . 317

Index 318

AccrualTime Accrual Time

Description

Class for the definition of accrual time and accrual intensity.

Details

AccrualTime is a class for the definition of accrual time and accrual intensity.

Fields

endOfAccrualIsUserDefined If TRUE, the end of accrual has to be defined by the user (i.e., the
length of accrualTime is equal to the length of accrualIntensity -1). Is a logical vector of
length 1.

followUpTimeMustBeUserDefined Specifies whether follow up time needs to be defined or not.
Is a logical vector of length 1.

maxNumberOfSubjectsIsUserDefined If TRUE, the maximum number of subjects has been spec-
ified by the user, if FALSE, it was calculated.

maxNumberOfSubjectsCanBeCalculatedDirectly If TRUE, the maximum number of subjects can
directly be calculated. Is a logical vector of length 1.

absoluteAccrualIntensityEnabled If TRUE, absolute accrual intensity is enabled. Is a logical
vector of length 1.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.

accrualIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

accrualIntensityRelative The relative accrual intensities.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

remainingTime In survival designs, the remaining time for observation. Is a numeric vector of
length 1.

piecewiseAccrualEnabled Indicates whether piecewise accrual is selected. Is a logical vector of
length 1.

10 AnalysisResultsConditionalDunnett

AnalysisResults Basic Class for Analysis Results

Description

A basic class for analysis results.

Details

AnalysisResults is the basic class for

• AnalysisResultsFisher,

• AnalysisResultsGroupSequential,

• AnalysisResultsInverseNormal,

• AnalysisResultsMultiArmFisher,

• AnalysisResultsMultiArmInverseNormal,

• AnalysisResultsConditionalDunnett,

• AnalysisResultsEnrichmentFisher,

• AnalysisResultsEnrichmentInverseNormal.

AnalysisResultsConditionalDunnett

Analysis Results Multi-Arm Conditional Dunnett

Description

Class for multi-arm analysis results based on a conditional Dunnett test design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of a conditional Dunnett test design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

AnalysisResultsEnrichment 11

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled", "pairwisePooled", "notPooled". Available options for enrichment
designs: "pooled", "pooledFromFull", "notPooled".

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

piControl The assumed probability in the control arm for simulation and under which the sample
size recalculation is performed. Is a numeric vector of length 1 containing a value between 0
and 1.

AnalysisResultsEnrichment

Basic Class for Analysis Results Enrichment

Description

A basic class for enrichment analysis results.

Details

AnalysisResultsEnrichment is the basic class for

• AnalysisResultsEnrichmentFisher and

• AnalysisResultsEnrichmentInverseNormal.

12 AnalysisResultsEnrichmentFisher

AnalysisResultsEnrichmentFisher

Analysis Results Enrichment Fisher

Description

Class for enrichment analysis results based on a Fisher combination test design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of a Fisher combination test design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled", "pairwisePooled", "notPooled". Available options for enrichment
designs: "pooled", "pooledFromFull", "notPooled".

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

AnalysisResultsEnrichmentInverseNormal 13

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

piControls The assumed rates in the control group for enrichment designs, i.e., designs with
multiple subsets.

conditionalPowerSimulated The simulated conditional power, under the assumption of observed
or assumed effect sizes.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

stratifiedAnalysis For enrichment designs, typically a stratified analysis should be chosen.
When testing means and rates, a non-stratified analysis can be performed on overall data. For
survival data, only a stratified analysis is possible. Is a logical vector of length 1.

AnalysisResultsEnrichmentInverseNormal

Analysis Results Enrichment Inverse Normal

Description

Class for enrichment analysis results based on a inverse normal design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the enrichment analysis results of an inverse normal design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

14 AnalysisResultsFisher

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled", "pairwisePooled", "notPooled". Available options for enrichment
designs: "pooled", "pooledFromFull", "notPooled".

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

piControls The assumed rates in the control group for enrichment designs, i.e., designs with
multiple subsets.

stratifiedAnalysis For enrichment designs, typically a stratified analysis should be chosen.
When testing means and rates, a non-stratified analysis can be performed on overall data. For
survival data, only a stratified analysis is possible. Is a logical vector of length 1.

AnalysisResultsFisher Analysis Results Fisher

Description

Class for analysis results based on a Fisher combination test design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the analysis results of a Fisher combination test design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

AnalysisResultsFisher 15

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.

equalVariances Describes if the variances in two treatment groups are assumed to be the same.
Is a logical vector of length 1.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

finalStage The stage at which the trial ends, either with acceptance or rejection of the null hy-
pothesis. Is a numeric vector of length 1.

finalPValues The final p-value that is based on the stage-wise ordering. Is a numeric vector of
length kMax containing values between 0 and 1.

finalConfidenceIntervalLowerBounds The lower bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

finalConfidenceIntervalUpperBounds The upper bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

medianUnbiasedEstimates The calculated median unbiased estimates that are based on the stage-
wise ordering. Is a numeric vector of length kMax.

conditionalPowerSimulated The simulated conditional power, under the assumption of observed
or assumed effect sizes.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

16 AnalysisResultsGroupSequential

AnalysisResultsGroupSequential

Analysis Results Group Sequential

Description

Class for analysis results results based on a group sequential design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the analysis results of a group sequential design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.

equalVariances Describes if the variances in two treatment groups are assumed to be the same.
Is a logical vector of length 1.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

AnalysisResultsInverseNormal 17

finalStage The stage at which the trial ends, either with acceptance or rejection of the null hy-
pothesis. Is a numeric vector of length 1.

finalPValues The final p-value that is based on the stage-wise ordering. Is a numeric vector of
length kMax containing values between 0 and 1.

finalConfidenceIntervalLowerBounds The lower bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

finalConfidenceIntervalUpperBounds The upper bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

medianUnbiasedEstimates The calculated median unbiased estimates that are based on the stage-
wise ordering. Is a numeric vector of length kMax.

maxInformation The maximum information. Is a numeric vector of length 1 containing a whole
number.

informationEpsilon The absolute information epsilon, which defines the maximum distance
from the observed information to the maximum information that causes the final analysis.
Updates at the final analysis if the observed information at the final analysis is smaller ("under-
running") than the planned maximum information. Is either a positive integer value specifying
the absolute information epsilon or a floating point number >0 and <1 to define a relative in-
formation epsilon.

AnalysisResultsInverseNormal

Analysis Results Inverse Normal

Description

Class for analysis results results based on an inverse normal design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the analysis results of a inverse normal design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

18 AnalysisResultsMultiArm

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.

equalVariances Describes if the variances in two treatment groups are assumed to be the same.
Is a logical vector of length 1.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

finalStage The stage at which the trial ends, either with acceptance or rejection of the null hy-
pothesis. Is a numeric vector of length 1.

finalPValues The final p-value that is based on the stage-wise ordering. Is a numeric vector of
length kMax containing values between 0 and 1.

finalConfidenceIntervalLowerBounds The lower bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

finalConfidenceIntervalUpperBounds The upper bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

medianUnbiasedEstimates The calculated median unbiased estimates that are based on the stage-
wise ordering. Is a numeric vector of length kMax.

AnalysisResultsMultiArm

Basic Class for Analysis Results Multi-Arm

Description

A basic class for multi-arm analysis results.

Details

AnalysisResultsMultiArm is the basic class for

• AnalysisResultsMultiArmFisher,

• AnalysisResultsMultiArmInverseNormal, and

• AnalysisResultsConditionalDunnett.

AnalysisResultsMultiArmFisher-class 19

AnalysisResultsMultiArmFisher-class

Analysis Results Multi-Arm Fisher

Description

Class for multi-arm analysis results based on a Fisher combination test design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of a Fisher combination test design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled", "pairwisePooled", "notPooled". Available options for enrichment
designs: "pooled", "pooledFromFull", "notPooled".

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

20 AnalysisResultsMultiArmInverseNormal

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

piControl The assumed probability in the control arm for simulation and under which the sample
size recalculation is performed. Is a numeric vector of length 1 containing a value between 0
and 1.

conditionalPowerSimulated The simulated conditional power, under the assumption of observed
or assumed effect sizes.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

AnalysisResultsMultiArmInverseNormal

Analysis Results Multi-Arm Inverse Normal

Description

Class for multi-arm analysis results based on a inverse normal design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of an inverse normal design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

AnalysisResultsMultiHypotheses 21

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled", "pairwisePooled", "notPooled". Available options for enrichment
designs: "pooled", "pooledFromFull", "notPooled".

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

piControl The assumed probability in the control arm for simulation and under which the sample
size recalculation is performed. Is a numeric vector of length 1 containing a value between 0
and 1.

AnalysisResultsMultiHypotheses

Basic Class for Analysis Results Multi-Hypotheses

Description

A basic class for multi-hypotheses analysis results.

Details

AnalysisResultsMultiHypotheses is the basic class for

• AnalysisResultsMultiArm and

• AnalysisResultsEnrichment.

22 as.data.frame.ParameterSet

as.data.frame.AnalysisResults

Coerce AnalysisResults to a Data Frame

Description

Returns the AnalysisResults object as data frame.

Usage

S3 method for class 'AnalysisResults'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
...,
niceColumnNamesEnabled = FALSE

)

Arguments

x An AnalysisResults object created by getAnalysisResults().

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

Details

Coerces the analysis results to a data frame.

Value

Returns a data.frame.

as.data.frame.ParameterSet

Coerce Parameter Set to a Data Frame

Description

Returns the ParameterSet as data frame.

as.data.frame.PowerAndAverageSampleNumberResult 23

Usage

S3 method for class 'ParameterSet'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
...

)

Arguments

x A FieldSet object.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the parameter set to a data frame.

Value

Returns a data.frame.

as.data.frame.PowerAndAverageSampleNumberResult

Coerce Power And Average Sample Number Result to a Data Frame

Description

Returns the PowerAndAverageSampleNumberResult as data frame.

Usage

S3 method for class 'PowerAndAverageSampleNumberResult'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
...

)

24 as.data.frame.StageResults

Arguments

x A PowerAndAverageSampleNumberResult object.

niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the PowerAndAverageSampleNumberResult object to a data frame.

Value

Returns a data.frame.

Examples

data <- as.data.frame(getPowerAndAverageSampleNumber(getDesignGroupSequential()))
head(data)
dim(data)

as.data.frame.StageResults

Coerce Stage Results to a Data Frame

Description

Returns the StageResults as data frame.

Usage

S3 method for class 'StageResults'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
type = 1,
...

)

as.data.frame.TrialDesign 25

Arguments

x A StageResults object.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the stage results to a data frame.

Value

Returns a data.frame.

as.data.frame.TrialDesign

Coerce TrialDesign to a Data Frame

Description

Returns the TrialDesign as data frame.

Usage

S3 method for class 'TrialDesign'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
...

)

Arguments

x A TrialDesign object.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

26 as.data.frame.TrialDesignCharacteristics

Details

Each element of the TrialDesign is converted to a column in the data frame.

Value

Returns a data.frame.

Examples

as.data.frame(getDesignGroupSequential())

as.data.frame.TrialDesignCharacteristics

Coerce TrialDesignCharacteristics to a Data Frame

Description

Returns the TrialDesignCharacteristics as data frame.

Usage

S3 method for class 'TrialDesignCharacteristics'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
...

)

Arguments

x A TrialDesignCharacteristics object.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Each element of the TrialDesignCharacteristics is converted to a column in the data frame.

Value

Returns a data.frame.

as.data.frame.TrialDesignPlan 27

Examples

as.data.frame(getDesignCharacteristics(getDesignGroupSequential()))

as.data.frame.TrialDesignPlan

Coerce Trial Design Plan to a Data Frame

Description

Returns the TrialDesignPlan as data frame.

Usage

S3 method for class 'TrialDesignPlan'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
...

)

Arguments

x A TrialDesignPlan object.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the design plan to a data frame.

Value

Returns a data.frame.

Examples

as.data.frame(getSampleSizeMeans())

28 as.data.frame.TrialDesignSet

as.data.frame.TrialDesignSet

Coerce Trial Design Set to a Data Frame

Description

Returns the TrialDesignSet as data frame.

Usage

S3 method for class 'TrialDesignSet'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
addPowerAndAverageSampleNumber = FALSE,
theta = seq(-1, 1, 0.02),
nMax = NA_integer_,
...

)

Arguments

x A TrialDesignSet object.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

addPowerAndAverageSampleNumber

If TRUE, power and average sample size will be added to data frame, default is
FALSE.

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

nMax The maximum sample size. Must be a positive integer of length 1.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the design set to a data frame.

Value

Returns a data.frame.

as.matrix.FieldSet 29

Examples

designSet <- getDesignSet(design = getDesignGroupSequential(), alpha = c(0.01, 0.05))
as.data.frame(designSet)

as.matrix.FieldSet Coerce Field Set to a Matrix

Description

Returns the FrameSet as matrix.

Usage

S3 method for class 'FieldSet'
as.matrix(x, ..., enforceRowNames = TRUE, niceColumnNamesEnabled = TRUE)

Arguments

x A FieldSet object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

enforceRowNames

If TRUE, row names will be created depending on the object type, default is TRUE.

niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

Details

Coerces the frame set to a matrix.

Value

Returns a matrix.

as251Normal Algorithm AS 251: Normal Distribution

Description

Calculates the Multivariate Normal Distribution with Product Correlation Structure published by
Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3 doi:10.2307/2347754.

https://doi.org/10.2307/2347754

30 as251StudentT

Usage

as251Normal(
lower,
upper,
sigma,
...,
eps = 1e-06,
errorControl = c("strict", "halvingIntervals"),
intervalSimpsonsRule = 0

)

Arguments

lower Lower limits of integration. Array of N dimensions

upper Upper limits of integration. Array of N dimensions

sigma Values defining correlation structure. Array of N dimensions

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

eps desired accuracy. Defaults to 1e-06

errorControl error control. If set to 1, strict error control based on fourth derivative is used. If
set to zero, error control based on halving intervals is used

intervalSimpsonsRule

Interval width for Simpson’s rule. Value of zero caused a default .24 to be used

Details

For a multivariate normal vector with correlation structure defined by rho(i,j) = bpd(i) * bpd(j),
computes the probability that the vector falls in a rectangle in n-space with error less than eps.

This function calculates the bdp value from sigma, determines the right inf value and calls mvnprd.

as251StudentT Algorithm AS 251: Student T Distribution

Description

Calculates the Multivariate Normal Distribution with Product Correlation Structure published by
Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3 doi:10.2307/2347754.

Usage

as251StudentT(
lower,
upper,
sigma,
...,
df,
eps = 1e-06,
errorControl = c("strict", "halvingIntervals"),
intervalSimpsonsRule = 0

)

https://doi.org/10.2307/2347754

ClosedCombinationTestResults 31

Arguments

lower Lower limits of integration. Array of N dimensions
upper Upper limits of integration. Array of N dimensions
sigma Values defining correlation structure. Array of N dimensions
... Ensures that all arguments (starting from the "...") are to be named and that a

warning will be displayed if unknown arguments are passed.
df Degrees of Freedom. Use 0 for infinite D.F.
eps desired accuracy. Defaults to 1e-06
errorControl error control. If set to 1, strict error control based on fourth derivative is used. If

set to zero, error control based on halving intervals is used
intervalSimpsonsRule

Interval width for Simpson’s rule. Value of zero caused a default .24 to be used

Details

For a multivariate normal vector with correlation structure defined by rho(i,j) = bpd(i) * bpd(j),
computes the probability that the vector falls in a rectangle in n-space with error less than eps.

This function calculates the bdp value from sigma, determines the right inf value and calls mvstud.

ClosedCombinationTestResults

Analysis Results Closed Combination Test

Description

Class for multi-arm analysis results based on a closed combination test.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of a closed combination test design.

Fields

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

indices Indicates which stages are available for analysis.
adjustedStageWisePValues The multiplicity adjusted p-values from the separate stages. Is a

numeric matrix.
overallAdjustedTestStatistics The overall adjusted test statistics.
separatePValues The p-values from the separate stages. Is a numeric matrix.
conditionalErrorRate The calculated conditional error rate.
secondStagePValues For conditional Dunnett test, the conditional or unconditional p-value cal-

culated for the second stage.
rejected Indicates whether a hypothesis is rejected or not.
rejectedIntersections The simulated number of rejected arms in the closed testing procedure..

Is a logical matrix.

32 ConditionalPowerResultsEnrichmentMeans

ConditionalPowerResults

Conditional Power Results

Description

Class for conditional power calculations

Details

This object cannot be created directly; use getConditionalPower() with suitable arguments to
create the results of a group sequential or a combination test design.

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-
ble when using Fisher designs. Is a logical vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.

ConditionalPowerResultsEnrichmentMeans

Conditional Power Results Enrichment Means

Description

Class for conditional power calculations of enrichment means data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

ConditionalPowerResultsEnrichmentRates 33

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.
simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-

ble when using Fisher designs. Is a logical vector of length 1.
conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length

1 containing a value between 0 and 1.
thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the

hazard ratio. Is a numeric vector.
assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or

enrichment designs. Is a numeric vector.

ConditionalPowerResultsEnrichmentRates

Conditional Power Results Enrichment Rates

Description

Class for conditional power calculations of enrichment rates data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.
simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-

ble when using Fisher designs. Is a logical vector of length 1.
conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length

1 containing a value between 0 and 1.
piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,

i.e., designs with multiple subsets.
piControls The assumed rates in the control group for enrichment designs, i.e., designs with

multiple subsets.

34 ConditionalPowerResultsRates

ConditionalPowerResultsMeans

Conditional Power Results Means

Description

Class for conditional power calculations of means data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-
ble when using Fisher designs. Is a logical vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.

ConditionalPowerResultsRates

Conditional Power Results Rates

Description

Class for conditional power calculations of rates data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

ConditionalPowerResultsSurvival 35

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-
ble when using Fisher designs. Is a logical vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

ConditionalPowerResultsSurvival

Conditional Power Results Survival

Description

Class for conditional power calculations of survival data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-
ble when using Fisher designs. Is a logical vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

36 dataEnrichmentRates

dataEnrichmentMeans Enrichment Dataset of Means

Description

A dataset containing the sample sizes, means, and standard deviations of two groups. Use getDataset(dataEnrichmentMeans)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentMeans

Format

A data.frame object.

dataEnrichmentMeansStratified

Stratified Enrichment Dataset of Means

Description

A dataset containing the sample sizes, means, and standard deviations of two groups. Use getDataset(dataEnrichmentMeansStratified)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentMeansStratified

Format

A data.frame object.

dataEnrichmentRates Enrichment Dataset of Rates

Description

A dataset containing the sample sizes and events of two groups. Use getDataset(dataEnrichmentRates)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentRates

Format

A data.frame object.

dataEnrichmentRatesStratified 37

dataEnrichmentRatesStratified

Stratified Enrichment Dataset of Rates

Description

A dataset containing the sample sizes and events of two groups. Use getDataset(dataEnrichmentRatesStratified)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentRatesStratified

Format

A data.frame object.

dataEnrichmentSurvival

Enrichment Dataset of Survival Data

Description

A dataset containing the log-rank statistics, events, and allocation ratios of two groups. Use getDataset(dataEnrichmentSurvival)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentSurvival

Format

A data.frame object.

dataEnrichmentSurvivalStratified

Stratified Enrichment Dataset of Survival Data

Description

A dataset containing the log-rank statistics, events, and allocation ratios of two groups. Use getDataset(dataEnrichmentSurvivalStratified)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentSurvivalStratified

Format

A data.frame object.

38 dataMultiArmRates

dataMeans One-Arm Dataset of Means

Description

A dataset containing the sample sizes, means, and standard deviations of one group. Use getDataset(dataMeans)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMeans

Format

A data.frame object.

dataMultiArmMeans Multi-Arm Dataset of Means

Description

A dataset containing the sample sizes, means, and standard deviations of four groups. Use getDataset(dataMultiArmMeans)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMultiArmMeans

Format

A data.frame object.

dataMultiArmRates Multi-Arm Dataset of Rates

Description

A dataset containing the sample sizes and events of three groups. Use getDataset(dataMultiArmRates)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMultiArmRates

Format

A data.frame object.

dataMultiArmSurvival 39

dataMultiArmSurvival Multi-Arm Dataset of Survival Data

Description

A dataset containing the log-rank statistics, events, and allocation ratios of three groups. Use
getDataset(dataMultiArmSurvival) to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMultiArmSurvival

Format

A data.frame object.

dataRates One-Arm Dataset of Rates

Description

A dataset containing the sample sizes and events of one group. Use getDataset(dataRates) to
create a dataset object that can be processed by getAnalysisResults().

Usage

dataRates

Format

A data.frame object.

Dataset Dataset

Description

Basic class for datasets.

Details

Dataset is the basic class for

• DatasetMeans,

• DatasetRates,

• DatasetSurvival, and

• DatasetEnrichmentSurvival.

This basic class contains the fields stages and groups and several commonly used functions.

40 DatasetRates

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

groups The group numbers. Is a numeric vector.

DatasetMeans Dataset of Means

Description

Class for a dataset of means.

Details

This object cannot be created directly; better use getDataset with suitable arguments to create a
dataset of means.

Fields

groups The group numbers. Is a numeric vector.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

means The means. Is a numeric vector of length number of stages times number of groups.

stDevs The standard deviations. Is a numeric vector of length number of stages times number of
groups.

overallSampleSizes The overall, i.e., cumulative sample sizes. Is a numeric vector of length
number of stages times number of groups.

overallMeans The overall, i.e., cumulative means. Is a numeric vector of length number of stages
times number of groups.

overallStDevs The overall, i.e., cumulative standard deviations. Is a numeric vector of length
number of stages times number of groups.

DatasetRates Dataset of Rates

Description

Class for a dataset of rates.

Details

This object cannot be created directly; better use getDataset with suitable arguments to create a
dataset of rates.

DatasetSurvival 41

Fields

groups The group numbers. Is a numeric vector.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

overallSampleSizes The overall, i.e., cumulative sample sizes. Is a numeric vector of length
number of stages times number of groups.

events The number of events in each group at each stage. Is a numeric vector of length number of
stages times number of groups.

overallEvents The overall, i.e., cumulative events. Is a numeric vector of length number of stages
times number of groups containing whole numbers.

DatasetSurvival Dataset of Survival Data

Description

Class for a dataset of survival data.

Details

This object cannot be created directly; better use getDataset with suitable arguments to create a
dataset of survival data.

Fields

groups The group numbers. Is a numeric vector.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

events The number of events in each group at each stage. Is a numeric vector of length number of
stages times number of groups.

overallEvents The overall, i.e., cumulative events. Is a numeric vector of length number of stages
times number of groups containing whole numbers.

allocationRatios The observed allocation ratios. Is a numeric vector of length number of stages
times number of groups.

overallAllocationRatios The cumulative allocation ratios. Is a numeric vector of length num-
ber of stages times number of groups.

logRanks The logrank test statistics at each stage of the trial. Is a numeric vector of length number
of stages times number of groups.

overallLogRanks The overall, i.e., cumulative logrank test statistics. Is a numeric vector of length
number of stages times number of groups.

42 EventProbabilities

dataSurvival One-Arm Dataset of Survival Data

Description

A dataset containing the log-rank statistics, events, and allocation ratios of one group. Use getDataset(dataSurvival)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataSurvival

Format

A data.frame object.

EventProbabilities Event Probabilities

Description

Class for the definition of event probabilities.

Details

EventProbabilities is a class for the definition of event probabilities.

Fields

time The time values. Is a numeric vector.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.

accrualIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

kappa The shape of the Weibull distribution if kappa!=1. Is a numeric vector of length 1.

piecewiseSurvivalTime The time intervals for the piecewise definition of the exponential sur-
vival time cumulative distribution function. Is a numeric vector.

lambda1 The assumed hazard rate in the treatment group. Is a numeric vector of length kMax.

lambda2 The assumed hazard rate in the reference group. Is a numeric vector of length 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

hazardRatio The hazard ratios under consideration. Is a numeric vector of length kMax.

dropoutRate1 The assumed drop-out rate in the treatment group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutRate2 The assumed drop-out rate in the control group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutTime The assumed time for drop-out rates in the control and treatment group. Is a numeric
vector of length 1.

FieldSet 43

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

overallEventProbabilities Deprecated field which will be removed in one of the next releases.
Use cumulativeEventProbabilities instead.

cumulativeEventProbabilities The cumulative event probabilities in survival designs. Is a nu-
meric vector.

eventProbabilities1 The event probabilities in treatment group 1. Is a numeric vector.

eventProbabilities2 The event probabilities in treatment group 2. Is a numeric vector.

FieldSet Field Set

Description

Basic class for field sets.

Details

The field set implements basic functions for a set of fields.

getAccrualTime Get Accrual Time

Description

Returns an AccrualTime object that contains the accrual time and the accrual intensity.

Usage

getAccrualTime(
accrualTime = NA_real_,
...,
accrualIntensity = NA_real_,
accrualIntensityType = c("auto", "absolute", "relative"),
maxNumberOfSubjects = NA_real_

)

Arguments

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

44 getAccrualTime

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

maxNumberOfSubjects

The maximum number of subjects.

Value

Returns an AccrualTime object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.
accrualIntensity itself is a value or a vector (depending on the length of accrualTime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the relative inten-
sity how subjects enter the trial. For example, accrualIntensity = c(0.1, 0.2) specifies that in
the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = 0.1 meaning that the absolute accrual intensity will
be calculated.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

getAccrualTime 45

See Also

getNumberOfSubjects() for calculating the number of subjects at given time points.

Examples

Not run:
Assume that in a trial the accrual after the first 6 months is doubled
and the total accrual time is 30 months.
Further assume that a total of 1000 subjects are entered in the trial.
The number of subjects to be accrued in the first 6 months and afterwards
is achieved through
getAccrualTime(accrualTime = c(0, 6, 30),

accrualIntensity = c(0.1, 0.2), maxNumberOfSubjects = 1000)

The same result is obtained via the list based definition
getAccrualTime(list(

"0 - <6" = 0.1,
"6 - <=30" = 0.2),
maxNumberOfSubjects = 1000)

Calculate the end of accrual at given absolute intensity:
getAccrualTime(accrualTime = c(0, 6),

accrualIntensity = c(18, 36), maxNumberOfSubjects = 1000)

Via the list based definition this is
getAccrualTime(list(

"0 - <6" = 18,
">=6" = 36),
maxNumberOfSubjects = 1000)

You can use an accrual time object in getSampleSizeSurvival() or
getPowerSurvival().
For example, if the maximum number of subjects and the follow up
time needs to be calculated for a given effect size:
accrualTime = getAccrualTime(accrualTime = c(0, 6, 30),

accrualIntensity = c(0.1, 0.2))
getSampleSizeSurvival(accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2)

Or if the power and follow up time needs to be calculated for given
number of events and subjects:
accrualTime = getAccrualTime(accrualTime = c(0, 6, 30),

accrualIntensity = c(0.1, 0.2), maxNumberOfSubjects = 110)
getPowerSurvival(accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2,
maxNumberOfEvents = 46)

How to show accrual time details

You can use a sample size or power object as argument for the function
getAccrualTime():
sampleSize <-
getSampleSizeSurvival(accrualTime = c(0, 6), accrualIntensity = c(22, 53),

lambda2 = 0.05, hazardRatio = 0.8, followUpTime = 6)
sampleSize
accrualTime <- getAccrualTime(sampleSize)
accrualTime

46 getAnalysisResults

End(Not run)

getAnalysisResults Get Analysis Results

Description

Calculates and returns the analysis results for the specified design and data.

Usage

getAnalysisResults(
design,
dataInput,
...,
directionUpper = TRUE,
thetaH0 = NA_real_,
nPlanned = NA_real_,
allocationRatioPlanned = 1,
stage = NA_integer_,
maxInformation = NULL,
informationEpsilon = NULL

)

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

... Further arguments to be passed to methods (cf., separate functions in "See Also"
below), e.g.,

thetaH1 and stDevH1 (or assumedStDev / assumedStDevs), pi1, pi2, or piTreatments, piControl(s)
The assumed effect size, standard deviation or rates to calculate the con-
ditional power if nPlanned is specified. For survival designs, thetaH1
refers to the hazard ratio. For one-armed trials with binary outcome, only
pi1 can be specified, for two-armed trials with binary outcome, pi1 and
pi2 can be specified referring to the assumed treatment and control rate,
respectively. In multi-armed or enrichment designs, you can specify a
value or a vector with elements referring to the treatment arms or the sub-
populations, respectively. For testing rates, the parameters to be specified
are piTreatments and piControl (multi-arm designs) and piTreatments
and piControls (enrichment designs).
If not specified, the conditional power is calculated under the assumption
of observed effect sizes, standard deviations, rates, or hazard ratios.

iterations Iterations for simulating the power for Fisher’s combination test.
If the power for more than one remaining stages is to be determined for
Fisher’s combination test, it is estimated via simulation with specified
iterations, the default is 1000.

getAnalysisResults 47

seed Seed for simulating the conditional power for Fisher’s combination test.
See above, default is a random seed.

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple hypotheses. Five
options are available in multi-arm designs: "Dunnett", "Bonferroni",
"Simes", "Sidak", and "Hierarchical", default is "Dunnett". Four op-
tions are available in population enrichment designs: "SpiessensDebois"
(one subset only), "Bonferroni", "Simes", and "Sidak", default is "Simes".

varianceOption Defines the way to calculate the variance in multiple treat-
ment arms (> 2) or population enrichment designs for testing means. For
multiple arms, three options are available: "overallPooled", "pairwisePooled",
and "notPooled", default is "overallPooled". For enrichment designs,
the options are: "pooled", "pooledFromFull" (one subset only), and "notPooled",
default is "pooled".

stratifiedAnalysis For enrichment designs, typically a stratified analysis
should be chosen. For testing means and rates, also a non-stratified analysis
based on overall data can be performed. For survival data, only a stratified
analysis is possible (see Brannath et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both

48 getAnalysisResults

treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

stage The stage number (optional). Default: total number of existing stages in the data
input.

maxInformation Positive integer value specifying the maximum information.
informationEpsilon

Positive integer value specifying the absolute information epsilon, which de-
fines the maximum distance from the observed information to the maximum
information that causes the final analysis. Updates at the final analysis in case
the observed information at the final analysis is smaller ("under-running") than
the planned maximum information maxInformation, default is 0. Alternatively,
a floating-point number > 0 and < 1 can be specified to define a relative infor-
mation epsilon.

Details

Given a design and a dataset, at given stage the function calculates the test results (effect sizes, stage-
wise test statistics and p-values, overall p-values and test statistics, conditional rejection probability
(CRP), conditional power, Repeated Confidence Intervals (RCIs), repeated overall p-values, and
final stage p-values, median unbiased effect estimates, and final confidence intervals.

For designs with more than two treatments arms (multi-arm designs) or enrichment designs a closed
combination test is performed. That is, additionally the statistics to be used in a closed testing
procedure are provided.

The conditional power is calculated if the planned sample size for the subsequent stages (nPlanned)
is specified. The conditional power is calculated either under the assumption of the observed effect
or under the assumption of an assumed effect, that has to be specified (see above).
For testing rates in a two-armed trial, pi1 and pi2 typically refer to the rates in the treatment and the
control group, respectively. This is not mandatory, however, and so pi1 and pi2 can be interchanged.
In many-to-one multi-armed trials, piTreatments and piControl refer to the rates in the treatment
arms and the one control arm, and so they cannot be interchanged. piTreatments and piControls in
enrichment designs can principally be interchanged, but we use the plural form to indicate that the
rates can be differently specified for the sub-populations.

Median unbiased effect estimates and confidence intervals are calculated if a group sequential de-
sign or an inverse normal combination test design was chosen, i.e., it is not applicable for Fisher’s
p-value combination test design. For the inverse normal combination test design with more than
two stages, a warning informs that the validity of the confidence interval is theoretically shown only
if no sample size change was performed.

A final stage p-value for Fisher’s combination test is calculated only if a two-stage design was
chosen. For Fisher’s combination test, the conditional power for more than one remaining stages is
estimated via simulation.

Final stage p-values, median unbiased effect estimates, and final confidence intervals are not calcu-
lated for multi-arm and enrichment designs.

getAnalysisResults 49

Value

Returns an AnalysisResults object. The following generics (R generic functions) are available
for this result object:

• names to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getObservedInformationRates()

Other analysis functions: getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(),
getTestActions()

Examples

Not run:
Example 1 One-Sample t Test
Perform an analysis within a three-stage group sequential design with
O'Brien & Fleming boundaries and one-sample data with a continuous outcome
where H0: mu = 1.2 is to be tested
dsnGS <- getDesignGroupSequential()
dataMeans <- getDataset(

n = c(30, 30),
means = c(1.96, 1.76),
stDevs = c(1.92, 2.01))

getAnalysisResults(design = dsnGS, dataInput = dataMeans, thetaH0 = 1.2)

You can obtain the results when performing an inverse normal combination test
with these data by using the commands
dsnIN <- getDesignInverseNormal()
getAnalysisResults(design = dsnIN, dataInput = dataMeans, thetaH0 = 1.2)

Example 2 Use Function Approach with Time to Event Data
Perform an analysis within a use function approach according to an
O'Brien & Fleming type use function and survival data where
where H0: hazard ratio = 1 is to be tested. The events were observed
over time and maxInformation = 120, informationEpsilon = 5 specifies
that 116 > 120 - 5 observed events defines the final analysis.
design <- getDesignGroupSequential(typeOfDesign = "asOF")

50 getAnalysisResults

dataSurvival <- getDataset(
cumulativeEvents = c(33, 72, 116),
cumulativeLogRanks = c(1.33, 1.88, 1.902))

getAnalysisResults(design, dataInput = dataSurvival, maxInformation = 120,
informationEpsilon = 5)

Example 3 Multi-Arm Design
In a four-stage combination test design with O'Brien & Fleming boundaries
at the first stage the second treatment arm was dropped. With the Bonferroni
intersection test, the results together with the CRP, conditional power
(assuming a total of 40 subjects for each comparison and effect sizes 0.5
and 0.8 for treatment arm 1 and 3, respectively, and standard deviation 1.2),
RCIs and p-values of a closed adaptive test procedure are
obtained as follows with the given data (treatment arm 4 refers to the
reference group; displayed with summary and plot commands):
data <- getDataset(

n1 = c(22, 23),
n2 = c(21, NA),
n3 = c(20, 25),
n4 = c(25, 27),
means1 = c(1.63, 1.51),
means2 = c(1.4, NA),
means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = c(1.2, 1.4),
stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = c(1.02, 1.18))

design <- getDesignInverseNormal(kMax = 4)
x <- getAnalysisResults(design, dataInput = data, intersectionTest = "Bonferroni",

nPlanned = c(40, 40), thetaH1 = c(0.5, NA, 0.8), assumedStDevs = 1.2)
summary(x)
if (require(ggplot2)) plot(x, thetaRange = c(0, 0.8))
design <- getDesignConditionalDunnett(secondStageConditioning = FALSE)
y <- getAnalysisResults(design, dataInput = data,

nPlanned = 40, thetaH1 = c(0.5, NA, 0.8), assumedStDevs = 1.2, stage = 1)
summary(y)
if (require(ggplot2)) plot(y, thetaRange = c(0, 0.4))

Example 4 Enrichment Design
Perform an two-stage enrichment design analysis with O'Brien & Fleming boundaries
where one sub-population (S1) and a full population (F) are considered as primary
analysis sets. At interim, S1 is selected for further analysis and the sample
size is increased accordingly. With the Spiessens & Debois intersection test,
the results of a closed adaptive test procedure together with the CRP, repeated
RCIs and p-values are obtained as follows with the given data (displayed with
summary and plot commands):
design <- getDesignInverseNormal(kMax = 2, typeOfDesign = "OF")
dataS1 <- getDataset(

means1 = c(13.2, 12.8),
means2 = c(11.1, 10.8),
stDev1 = c(3.4, 3.3),
stDev2 = c(2.9, 3.5),
n1 = c(21, 42),
n2 = c(19, 39))

dataNotS1 <- getDataset(
means1 = c(11.8, NA),

getClosedCombinationTestResults 51

means2 = c(10.5, NA),
stDev1 = c(3.6, NA),
stDev2 = c(2.7, NA),
n1 = c(15, NA),
n2 = c(13, NA))

dataBoth <- getDataset(S1 = dataS1, R = dataNotS1)
x <- getAnalysisResults(design, dataInput = dataBoth,

intersectionTest = "SpiessensDebois",
varianceOption = "pooledFromFull",
stratifiedAnalysis = TRUE)

summary(x)
if (require(ggplot2)) plot(x, type = 2)

End(Not run)

getClosedCombinationTestResults

Get Closed Combination Test Results

Description

Calculates and returns the results from the closed combination test in multi-arm and population
enrichment designs.

Usage

getClosedCombinationTestResults(stageResults)

Arguments

stageResults The results at given stage, obtained from getStageResults().

Value

Returns a ClosedCombinationTestResults object. The following generics (R generic functions)
are available for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

52 getClosedConditionalDunnettTestResults

See Also

Other analysis functions: getAnalysisResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(),
getTestActions()

Examples

Not run:
In a four-stage combination test design with O'Brien & Fleming boundaries
at the first stage the second treatment arm was dropped. With the Bonferroni
intersection test, the results of a closed adaptive test procedure are
obtained as follows with the given data (treatment arm 4 refers to the
reference group):
data <- getDataset(

n1 = c(22, 23),
n2 = c(21, NA),
n3 = c(20, 25),
n4 = c(25, 27),
means1 = c(1.63, 1.51),
means2 = c(1.4, NA),
means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = c(1.2, 1.4),
stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = c(1.02, 1.18))

design <- getDesignInverseNormal(kMax = 4)
stageResults <- getStageResults(design, dataInput = data,

intersectionTest = "Bonferroni")
getClosedCombinationTestResults(stageResults)

End(Not run)

getClosedConditionalDunnettTestResults

Get Closed Conditional Dunnett Test Results

Description

Calculates and returns the results from the closed conditional Dunnett test.

Usage

getClosedConditionalDunnettTestResults(
stageResults,
...,
stage = stageResults$stage

)

getClosedConditionalDunnettTestResults 53

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

For performing the conditional Dunnett test the design must be defined through the function getDesignConditionalDunnett().
See Koenig et al. (2008) and Wassmer & Brannath (2016), chapter 11 for details of the test proce-
dure.

Value

Returns a ClosedCombinationTestResults object. The following generics (R generic functions)
are available for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getConditionalPower(),
getConditionalRejectionProbabilities(), getFinalConfidenceInterval(), getFinalPValue(),
getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Not run:
In a two-stage design a conditional Dunnett test should be performed
where the unconditional second stage p-values should be used for the
test decision.
At the first stage the second treatment arm was dropped. The results of
a closed conditionsal Dunnett test are obtained as follows with the given
data (treatment arm 4 refers to the reference group):
data <- getDataset(

n1 = c(22, 23),
n2 = c(21, NA),
n3 = c(20, 25),

54 getConditionalPower

n4 = c(25, 27),
means1 = c(1.63, 1.51),
means2 = c(1.4, NA),
means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = c(1.2, 1.4),
stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = c(1.02, 1.18))

For getting the results of the closed test procedure, use the following commands:
design <- getDesignConditionalDunnett(secondStageConditioning = FALSE)
stageResults <- getStageResults(design, dataInput = data)
getClosedConditionalDunnettTestResults(stageResults)

End(Not run)

getConditionalPower Get Conditional Power

Description

Calculates and returns the conditional power.

Usage

getConditionalPower(stageResults, ..., nPlanned, allocationRatioPlanned = 1)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Further (optional) arguments to be passed:

thetaH1 and stDevH1 (or assumedStDev / assumedStDevs), pi1, pi2, or piTreatments, piControl(s)
The assumed effect size, standard deviation or rates to calculate the con-
ditional power if nPlanned is specified. For survival designs, thetaH1
refers to the hazard ratio. For one-armed trials with binary outcome, only
pi1 can be specified, for two-armed trials with binary outcome, pi1 and
pi2 can be specified referring to the assumed treatment and control rate,
respectively. In multi-armed or enrichment designs, you can specify a
value or a vector with elements referring to the treatment arms or the sub-
populations, respectively. For testing rates, the parameters to be specified
are piTreatments and piControl (multi-arm designs) and piTreatments
and piControls (enrichment designs).
If not specified, the conditional power is calculated under the assumption
of observed effect sizes, standard deviations, rates, or hazard ratios.

iterations Iterations for simulating the power for Fisher’s combination test.
If the power for more than one remaining stages is to be determined for
Fisher’s combination test, it is estimated via simulation with specified
iterations, the default is 1000.

seed Seed for simulating the conditional power for Fisher’s combination test.
See above, default is a random seed.

getConditionalPower 55

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

Details

The conditional power is calculated if the planned sample size for the subsequent stages is specified.
For testing rates in a two-armed trial, pi1 and pi2 typically refer to the rates in the treatment and the
control group, respectively. This is not mandatory, however, and so pi1 and pi2 can be interchanged.
In many-to-one multi-armed trials, piTreatments and piControl refer to the rates in the treatment
arms and the one control arm, and so they cannot be interchanged. piTreatments and piControls in
enrichment designs can principally be interchanged, but we use the plural form to indicate that the
rates can be differently specified for the sub-populations.

For Fisher’s combination test, the conditional power for more than one remaining stages is estimated
via simulation.

Value

Returns a ConditionalPowerResults object. The following generics (R generic functions) are
available for this result object:

• names() to obtain the field names,
• print() to print the object,
• summary() to display a summary of the object,
• plot() to plot the object,
• as.data.frame() to coerce the object to a data.frame,
• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

plot.StageResults() or plot.AnalysisResults() for plotting the conditional power.

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalRejectionProbabilities(), getFinalConfidenceInterval(), getFinalPValue(),
getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

56 getConditionalRejectionProbabilities

Examples

Not run:
data <- getDataset(

n1 = c(22, 13, 22, 13),
n2 = c(22, 11, 22, 11),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 1, 2.5),
stds1 = c(1, 2, 2, 1.3),
stds2 = c(1, 2, 2, 1.3))

stageResults <- getStageResults(
getDesignGroupSequential(kMax = 4),
dataInput = data, stage = 2, directionUpper = FALSE)

getConditionalPower(stageResults, thetaH1 = -0.4,
nPlanned = c(64, 64), assumedStDev = 1.5, allocationRatioPlanned = 3)

End(Not run)

getConditionalRejectionProbabilities

Get Conditional Rejection Probabilities

Description

Calculates the conditional rejection probabilities (CRP) for given test results.

Usage

getConditionalRejectionProbabilities(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Further (optional) arguments to be passed:

iterations Iterations for simulating the conditional rejection probabilities for
Fisher’s combination test. For checking purposes, it can be estimated via
simulation with specified iterations.

seed Seed for simulating the conditional rejection probabilities for Fisher’s
combination test. See above, default is a random seed.

Details

The conditional rejection probability is the probability, under H0, to reject H0 in one of the subse-
quent (remaining) stages. The probability is calculated using the specified design. For testing rates
and the survival design, the normal approximation is used, i.e., it is calculated with the use of the
prototype case testing a mean for normally distributed data with known variance.

The conditional rejection probabilities are provided up to the specified stage.

For Fisher’s combination test, you can check the validity of the CRP calculation via simulation.

getData 57

Value

Returns a numeric vector of length kMax or in case of multi-arm stage results a matrix (each col-
umn represents a stage, each row a comparison) containing the conditional rejection probabilities.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getFinalConfidenceInterval(), getFinalPValue(), getRepeatedConfidenceIntervals(),
getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Not run:
Calculate CRP for a Fisher's combination test design with
two remaining stages and check the results by simulation.
design <- getDesignFisher(kMax = 4,

informationRates = c(0.1, 0.3, 0.8, 1), alpha = 0.01)
data <- getDataset(n = c(40, 40), events = c(20, 22))
sr <- getStageResults(design, data, thetaH0 = 0.4)
getConditionalRejectionProbabilities(sr)
getConditionalRejectionProbabilities(sr, simulateCRP = TRUE,

seed = 12345, iterations = 10000)

End(Not run)

getData Get Simulation Data

Description

Returns the aggregated simulation data.

Usage

getData(x)

getData.SimulationResults(x)

Arguments

x A SimulationResults object created by getSimulationMeans(),
getSimulationRates(), getSimulationSurvival(), getSimulationMultiArmMeans(),
getSimulationMultiArmRates(), or getSimulationMultiArmSurvival().

Details

This function can be used to get the aggregated simulated data from an simulation results object,
for example, obtained by getSimulationSurvival(). In this case, the data frame contains the
following columns:

1. iterationNumber: The number of the simulation iteration.

58 getData

2. stageNumber: The stage.

3. pi1: The assumed or derived event rate in the treatment group.

4. pi2: The assumed or derived event rate in the control group.

5. hazardRatio: The hazard ratio under consideration (if available).

6. analysisTime: The analysis time.

7. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

8. eventsPerStage1: The observed number of events per stage in treatment group 1.

9. eventsPerStage2: The observed number of events per stage in treatment group 2.

10. eventsPerStage: The observed number of events per stage in both treatment groups.

11. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

12. eventsNotAchieved: 1 if number of events could not be reached with observed number of
subjects, 0 otherwise.

13. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

14. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher combination test)’

15. logRankStatistic: Z-score statistic which corresponds to a one-sided log-rank test at con-
sidered stage.

16. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1 or pi1H1 and pi2H1.

17. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

18. hazardRatioEstimateLR: The estimated hazard ratio, derived from the log-rank statistic.

A subset of variables is provided for getSimulationMeans(), getSimulationRates(), getSimulationMultiArmMeans(),
getSimulationMultiArmRates(), or getSimulationMultiArmSurvival().

Value

Returns a data.frame.

Examples

results <- getSimulationSurvival(
pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)
data <- getData(results)
head(data)
dim(data)

getDataset 59

getDataset Get Dataset

Description

Creates a dataset object and returns it.

Usage

getDataset(..., floatingPointNumbersEnabled = FALSE)

getDataSet(..., floatingPointNumbersEnabled = FALSE)

Arguments

... A data.frame or some data vectors defining the dataset.
floatingPointNumbersEnabled

If TRUE, sample sizes and event numbers can be specified as floating-point num-
bers (this make sense, e.g., for theoretical comparisons);
by default floatingPointNumbersEnabled = FALSE, i.e., samples sizes and event
numbers defined as floating-point numbers will be truncated.

Details

The different dataset types DatasetMeans, of DatasetRates, or DatasetSurvival can be created
as follows:

• An element of DatasetMeans for one sample is created by
getDataset(sampleSizes =, means =, stDevs =) where
sampleSizes, means, stDevs are vectors with stage-wise sample sizes, means and standard
deviations of length given by the number of available stages.

• An element of DatasetMeans for two samples is created by
getDataset(sampleSizes1 =, sampleSizes2 =, means1 =, means2 =,
stDevs1 =, stDevs2 =) where sampleSizes1, sampleSizes2, means1, means2, stDevs1,
stDevs2 are vectors with stage-wise sample sizes, means and standard deviations for the two
treatment groups of length given by the number of available stages.

• An element of DatasetRates for one sample is created by
getDataset(sampleSizes =, events =) where sampleSizes, events are vectors with stage-
wise sample sizes and events of length given by the number of available stages.

• An element of DatasetRates for two samples is created by
getDataset(sampleSizes1 =, sampleSizes2 =, events1 =, events2 =) where sampleSizes1,
sampleSizes2, events1, events2 are vectors with stage-wise sample sizes and events for the
two treatment groups of length given by the number of available stages.

• An element of DatasetSurvival is created by
getDataset(events =, logRanks =, allocationRatios =) where events, logRanks, and
allocation ratios are the stage-wise events, (one-sided) logrank statistics, and allocation
ratios.

• An element of DatasetMeans, DatasetRates, and DatasetSurvival for more than one com-
parison is created by adding subsequent digits to the variable names. The system can analyze
these data in a multi-arm many-to-one comparison setting where the group with the highest
index represents the control group.

60 getDataset

Prefix overall[Capital case of first letter of variable name]... for the variable names en-
ables entering the overall (cumulative) results and calculates stage-wise statistics. Since rpact ver-
sion 3.2, the prefix cumulative[Capital case of first letter of variable name]... or cum[Capital
case of first letter of variable name]... can alternatively be used for this.

n can be used in place of samplesizes.

Note that in survival design usually the overall (cumulative) events and logrank test statistics are
provided in the output, so
getDataset(cumulativeEvents=, cumulativeLogRanks =, cumulativeAllocationRatios =)
is the usual command for entering survival data. Note also that for cumulativeLogranks also the
z scores from a Cox regression can be used.

For multi-arm designs, the index refers to the considered comparison. For example,
getDataset(events1=c(13, 33), logRanks1 = c(1.23, 1.55), events2 = c(16, NA), logRanks2
= c(1.55, NA))
refers to the case where one active arm (1) is considered at both stages whereas active arm 2 was
dropped at interim. Number of events and logrank statistics are entered for the corresponding com-
parison to control (see Examples).

For enrichment designs, the comparison of two samples is provided for an unstratified (sub-population
wise) or stratified data input.
For unstratified (sub-population wise) data input the data sets are defined for the sub-populations
S1, S2, ..., F, where F refers to the full populations. Use of getDataset(S1 = , S2, ..., F =)
defines the data set to be used in getAnalysisResults() (see examples)
For stratified data input the data sets are defined for the strata S1, S12, S2, ..., R, where R refers to the
remainder of the strata such that the union of all sets is the full population. Use of getDataset(S1 =
, S12 = , S2, ..., R =) defines the data set to be used in getAnalysisResults() (see examples)
For survival data, for enrichment designs the log-rank statistics should be entered as stratified log-
rank statistics in order to provide strong control of Type I error rate. For stratified data input, the
variables to be specified in getDataset() are events, expectedEvents, varianceEvents, and
allocationRatios or overallEvents, overallExpectedEvents, overallVarianceEvents, and
overallAllocationRatios. From this, (stratified) log-rank tests are calculated.

Value

Returns a Dataset object. The following generics (R generic functions) are available for this result
object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Examples

Create a Dataset of Means (one group):
datasetOfMeans <- getDataset(

n = c(22, 11, 22, 11),
means = c(1, 1.1, 1, 1),
stDevs = c(1, 2, 2, 1.3)

)
datasetOfMeans

getDataset 61

datasetOfMeans$show(showType = 2)
Not run:
datasetOfMeans <- getDataset(

cumulativeSampleSizes = c(22, 33, 55, 66),
cumulativeMeans = c(1.000, 1.033, 1.020, 1.017),
cumulativeStDevs = c(1.00, 1.38, 1.64, 1.58)

)
datasetOfMeans
datasetOfMeans$show(showType = 2)
as.data.frame(datasetOfMeans)

Create a Dataset of Means (two groups):
datasetOfMeans <- getDataset(

n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)
datasetOfMeans

datasetOfMeans <- getDataset(
cumulativeSampleSizes1 = c(22, 33, 55, 66),
cumulativeSampleSizes2 = c(22, 35, 57, 70),
cumulativeMeans1 = c(1, 1.033, 1.020, 1.017),
cumulativeMeans2 = c(1.4, 1.437, 2.040, 2.126),
cumulativeStDevs1 = c(1, 1.38, 1.64, 1.58),
cumulativeStDevs2 = c(1, 1.43, 1.82, 1.74)

)
datasetOfMeans

df <- data.frame(
stages = 1:4,
n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)
datasetOfMeans <- getDataset(df)
datasetOfMeans

Create a Dataset of Means (three groups) where the comparison of
treatment arm 1 to control is dropped at the second interim stage:
datasetOfMeans <- getDataset(

cumN1 = c(22, 33, NA),
cumN2 = c(20, 34, 56),
cumN3 = c(22, 31, 52),
cumMeans1 = c(1.64, 1.54, NA),
cumMeans2 = c(1.7, 1.5, 1.77),
cumMeans3 = c(2.5, 2.06, 2.99),
cumStDevs1 = c(1.5, 1.9, NA),
cumStDevs2 = c(1.3, 1.3, 1.1),
cumStDevs3 = c(1, 1.3, 1.8))

datasetOfMeans

62 getDataset

Create a Dataset of Rates (one group):
datasetOfRates <- getDataset(

n = c(8, 10, 9, 11),
events = c(4, 5, 5, 6)

)
datasetOfRates

Create a Dataset of Rates (two groups):
datasetOfRates <- getDataset(

n2 = c(8, 10, 9, 11),
n1 = c(11, 13, 12, 13),
events2 = c(3, 5, 5, 6),
events1 = c(10, 10, 12, 12)

)
datasetOfRates

Create a Dataset of Rates (three groups) where the comparison of
treatment arm 2 to control is dropped at the first interim stage:
datasetOfRates <- getDataset(

cumN1 = c(22, 33, 44),
cumN2 = c(20, NA, NA),
cumN3 = c(20, 34, 44),
cumEvents1 = c(11, 14, 22),
cumEvents2 = c(17, NA, NA),
cumEvents3 = c(17, 19, 33))

datasetOfRates

Create a Survival Dataset
datasetSurvival <- getDataset(

cumEvents = c(8, 15, 19, 31),
cumAllocationRatios = c(1, 1, 1, 2),
cumLogRanks = c(1.52, 1.98, 1.99, 2.11)

)
datasetSurvival

Create a Survival Dataset with four comparisons where treatment
arm 2 was dropped at the first interim stage, and treatment arm 4
at the second.
datasetSurvival <- getDataset(

cumEvents1 = c(18, 45, 56),
cumEvents2 = c(22, NA, NA),
cumEvents3 = c(12, 41, 56),
cumEvents4 = c(27, 56, NA),
cumLogRanks1 = c(1.52, 1.98, 1.99),
cumLogRanks2 = c(3.43, NA, NA),
cumLogRanks3 = c(1.45, 1.67, 1.87),
cumLogRanks4 = c(1.12, 1.33, NA)

)
datasetSurvival

Enrichment: Stratified and unstratified data input
The following data are from one study. Only the first
(stratified) data input enables a stratified analysis.

Stratified data input
S1 <- getDataset(

getDataset 63

sampleSize1 = c(18, 17),
sampleSize2 = c(12, 33),
mean1 = c(125.6, 111.1),
mean2 = c(107.7, 77.7),
stDev1 = c(120.1, 145.6),
stDev2 = c(128.5, 133.3))

S2 <- getDataset(
sampleSize1 = c(11, NA),
sampleSize2 = c(14, NA),
mean1 = c(100.1, NA),
mean2 = c(68.3, NA),
stDev1 = c(116.8, NA),
stDev2 = c(124.0, NA))

S12 <- getDataset(
sampleSize1 = c(21, 17),
sampleSize2 = c(21, 12),
mean1 = c(135.9, 117.7),
mean2 = c(84.9, 107.7),
stDev1 = c(185.0, 92.3),
stDev2 = c(139.5, 107.7))

R <- getDataset(
sampleSize1 = c(19, NA),
sampleSize2 = c(33, NA),
mean1 = c(142.4, NA),
mean2 = c(77.1, NA),
stDev1 = c(120.6, NA),
stDev2 = c(163.5, NA))

dataEnrichment <- getDataset(S1 = S1, S2 = S2, S12 = S12, R = R)
dataEnrichment

Unstratified data input
S1N <- getDataset(

sampleSize1 = c(39, 34),
sampleSize2 = c(33, 45),
stDev1 = c(156.503, 120.084),
stDev2 = c(134.025, 126.502),
mean1 = c(131.146, 114.4),
mean2 = c(93.191, 85.7))

S2N <- getDataset(
sampleSize1 = c(32, NA),
sampleSize2 = c(35, NA),
stDev1 = c(163.645, NA),
stDev2 = c(131.888, NA),
mean1 = c(123.594, NA),
mean2 = c(78.26, NA))

F <- getDataset(
sampleSize1 = c(69, NA),
sampleSize2 = c(80, NA),
stDev1 = c(165.468, NA),
stDev2 = c(143.979, NA),
mean1 = c(129.296, NA),
mean2 = c(82.187, NA))

dataEnrichmentN <- getDataset(S1 = S1N, S2 = S2N, F = F)
dataEnrichmentN

End(Not run)

64 getDesignCharacteristics

getDesignCharacteristics

Get Design Characteristics

Description

Calculates the characteristics of a design and returns it.

Usage

getDesignCharacteristics(design = NULL, ...)

Arguments

design The trial design.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Calculates the inflation factor (IF), the expected reduction in sample size under H1, under H0, and
under a value in between H0 and H1. Furthermore, absolute information values are calculated under
the prototype case testing H0: mu = 0 against H1: mu = 1.

Value

Returns a TrialDesignCharacteristics object. The following generics (R generic functions) are
available for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignConditionalDunnett(), getDesignFisher(), getDesignGroupSequential(),
getDesignInverseNormal(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

getDesignConditionalDunnett 65

Examples

Calculate design characteristics for a three-stage O'Brien & Fleming
design at power 90% and compare it with Pocock's design.
getDesignCharacteristics(getDesignGroupSequential(beta = 0.1))
getDesignCharacteristics(getDesignGroupSequential(beta = 0.1, typeOfDesign = "P"))

getDesignConditionalDunnett

Get Design Conditional Dunnett Test

Description

Defines the design to perform an analysis with the conditional Dunnett test.

Usage

getDesignConditionalDunnett(
alpha = 0.025,
informationAtInterim = 0.5,
secondStageConditioning = TRUE

)

Arguments

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

informationAtInterim

The information to be expected at interim, default is informationAtInterim =
0.5.

secondStageConditioning

The way the second stage p-values are calculated within the closed system of
hypotheses. If secondStageConditioning = FALSE is specified, the uncondi-
tional adjusted p-values are used, otherwise conditional adjusted p-values are
calculated, default is secondStageConditioning = TRUE (for details, see Koenig
et al., 2008).

Details

For performing the conditional Dunnett test the design must be defined through this function. You
can define the information fraction and the way of how to compute the second stage p-values only
in the design definition, and not in the analysis call.
See getClosedConditionalDunnettTestResults() for an example and Koenig et al. (2008) and
Wassmer & Brannath (2016), chapter 11 for details of the test procedure.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,

66 getDesignFisher

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignCharacteristics(), getDesignFisher(), getDesignGroupSequential(),
getDesignInverseNormal(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

getDesignFisher Get Design Fisher

Description

Performs Fisher’s combination test and returns critical values for this design.

Usage

getDesignFisher(
...,
kMax = NA_integer_,
alpha = NA_real_,
method = c("equalAlpha", "fullAlpha", "noInteraction", "userDefinedAlpha"),
userAlphaSpending = NA_real_,
alpha0Vec = NA_real_,
informationRates = NA_real_,
sided = 1,
bindingFutility = NA,
tolerance = 1e-14,
iterations = 0,
seed = NA_real_

)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 20 for group sequential or inverse
normal and 6 for Fisher combination test designs.

getDesignFisher 67

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

method "equalAlpha", "fullAlpha", "noInteraction", or "userDefinedAlpha", de-
fault is "equalAlpha" (for details, see Wassmer, 1999).

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

alpha0Vec Stopping for futility bounds for stage-wise p-values.
informationRates

The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax.

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

bindingFutility

If bindingFutility = TRUE is specified the calculation of the critical values is
affected by the futility bounds (default is TRUE).

tolerance The numerical tolerance, default is 1e-14.

iterations The number of simulation iterations, e.g., getDesignFisher(iterations =
100000) checks the validity of the critical values for the design. The default
value of iterations is 0, i.e., no simulation will be executed.

seed Seed for simulating the power for Fisher’s combination test. See above, default
is a random seed.

Details

getDesignFisher() calculates the critical values and stage levels for Fisher’s combination test as
described in Bauer (1989), Bauer and Koehne (1994), Bauer and Roehmel (1995), and Wassmer
(1999) for equally and unequally sized stages.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

68 getDesignGroupSequential

See Also

getDesignSet() for creating a set of designs to compare.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignGroupSequential(),
getDesignInverseNormal(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

Examples

Calculate critical values for a two-stage Fisher's combination test
with full level alpha = 0.05 at the final stage and stopping for
futility bound alpha0 = 0.50, as described in Bauer and Koehne (1994).
getDesignFisher(kMax = 2, method = "fullAlpha", alpha = 0.05, alpha0Vec = 0.50)

getDesignGroupSequential

Get Design Group Sequential

Description

Provides adjusted boundaries and defines a group sequential design.

Usage

getDesignGroupSequential(
...,
kMax = NA_integer_,
alpha = NA_real_,
beta = NA_real_,
sided = 1L,
informationRates = NA_real_,
futilityBounds = NA_real_,
typeOfDesign = c("OF", "P", "WT", "PT", "HP", "WToptimum", "asP", "asOF", "asKD",

"asHSD", "asUser", "noEarlyEfficacy"),
deltaWT = NA_real_,
deltaPT1 = NA_real_,
deltaPT0 = NA_real_,
optimizationCriterion = c("ASNH1", "ASNIFH1", "ASNsum"),
gammaA = NA_real_,
typeBetaSpending = c("none", "bsP", "bsOF", "bsKD", "bsHSD", "bsUser"),
userAlphaSpending = NA_real_,
userBetaSpending = NA_real_,
gammaB = NA_real_,
bindingFutility = NA,
betaAdjustment = NA,
constantBoundsHP = 3,
twoSidedPower = NA,
delayedInformation = NA_real_,
tolerance = 1e-08

)

getDesignGroupSequential 69

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 20 for group sequential or inverse
normal and 6 for Fisher combination test designs.

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

beta Type II error rate, necessary for providing sample size calculations (e.g., getSampleSizeMeans()),
beta spending function designs, or optimum designs, default is 0.20. Must be a
positive numeric of length 1.

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

informationRates

The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax.

futilityBounds The futility bounds, defined on the test statistic z scale (numeric vector of length
kMax - 1).

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Pampallona & Tsiatis
("PT"), Haybittle & Peto ("HP"), Optimum design within Wang & Tsiatis class
("WToptimum"), O’Brien & Fleming type alpha spending ("asOF"), Pocock type
alpha spending ("asP"), Kim & DeMets alpha spending ("asKD"), Hwang, Shi
& DeCani alpha spending ("asHSD"), user defined alpha spending ("asUser"),
no early efficacy stop ("noEarlyEfficacy"), default is "OF".

deltaWT Delta for Wang & Tsiatis Delta class.

deltaPT1 Delta1 for Pampallona & Tsiatis class rejecting H0 boundaries.

deltaPT0 Delta0 for Pampallona & Tsiatis class rejecting H1 boundaries.
optimizationCriterion

Optimization criterion for optimum design within Wang & Tsiatis class ("ASNH1",
"ASNIFH1", "ASNsum"), default is "ASNH1", see details.

gammaA Parameter for alpha spending function.
typeBetaSpending

Type of beta spending. Type of of beta spending is one of the following: O’Brien
& Fleming type beta spending, Pocock type beta spending, Kim & DeMets
beta spending, Hwang, Shi & DeCani beta spending, user defined beta spending
("bsOF", "bsP", "bsKD", "bsHSD", "bsUser", default is "none").

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

userBetaSpending

The user defined beta spending. Vector of length kMax containing the cumulative
beta-spending up to each interim stage.

gammaB Parameter for beta spending function.
bindingFutility

Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in

70 getDesignGroupSequential

the sense that the study must be stopped if the futility condition was reached
(default is FALSE).

betaAdjustment For two-sided beta spending designs, if betaAdjustement = TRUE a linear ad-
justment of the beta spending values is performed if an overlapping of decision
regions for futility stopping at earlier stages occurs, otherwise no adjustment is
performed (default is TRUE).

constantBoundsHP

The constant bounds up to stage kMax - 1 for the Haybittle & Peto design (de-
fault is 3).

twoSidedPower For two-sided testing, if twoSidedPower = TRUE is specified the sample size
calculation is performed by considering both tails of the distribution. Default
is FALSE, i.e., it is assumed that one tail probability is equal to 0 or the power
should be directed to one part.

delayedInformation

Delay of information for delayed response designs. Can be a numeric value or a
numeric vector of length kMax - 1

tolerance The numerical tolerance, default is 1e-08.

Details

Depending on typeOfDesign some parameters are specified, others not. For example, only if
typeOfDesign "asHSD" is selected, gammaA needs to be specified.

If an alpha spending approach was specified ("asOF", "asP", "asKD", "asHSD", or "asUser")
additionally a beta spending function can be specified to produce futility bounds.

For optimum designs, "ASNH1" minimizes the expected sample size under H1, "ASNIFH1" min-
imizes the sum of the maximum sample and the expected sample size under H1, and "ASNsum"
minimizes the sum of the maximum sample size, the expected sample size under a value midway
H0 and H1, and the expected sample size under H1.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

getDesignInverseNormal 71

See Also

getDesignSet() for creating a set of designs to compare different designs.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignInverseNormal(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

Examples

Calculate two-sided critical values for a four-stage
Wang & Tsiatis design with Delta = 0.25 at level alpha = 0.05
getDesignGroupSequential(kMax = 4, alpha = 0.05, sided = 2,

typeOfDesign = "WT", deltaWT = 0.25)

Not run:
Calculate one-sided critical values and binding futility bounds for a three-stage
design with alpha- and beta-spending functions according to Kim & DeMets with gamma = 2.5
(planned informationRates as specified, default alpha = 0.025 and beta = 0.2)
getDesignGroupSequential(kMax = 3, informationRates = c(0.3, 0.75, 1),

typeOfDesign = "asKD", gammaA = 2.5, typeBetaSpending = "bsKD",
gammaB = 2.5, bindingFutility = TRUE)

End(Not run)

Calculate the Pocock type alpha spending critical values if the first
interim analysis was performed after 40% of the maximum information was observed
and the second after 70% of the maximum information was observed (default alpha = 0.025)
getDesignGroupSequential(informationRates = c(0.4, 0.7), typeOfDesign = "asP")

getDesignInverseNormal

Get Design Inverse Normal

Description

Provides adjusted boundaries and defines a group sequential design for its use in the inverse normal
combination test.

Usage

getDesignInverseNormal(
...,
kMax = NA_integer_,
alpha = NA_real_,
beta = NA_real_,
sided = 1L,
informationRates = NA_real_,
futilityBounds = NA_real_,
typeOfDesign = c("OF", "P", "WT", "PT", "HP", "WToptimum", "asP", "asOF", "asKD",

"asHSD", "asUser", "noEarlyEfficacy"),
deltaWT = NA_real_,
deltaPT1 = NA_real_,
deltaPT0 = NA_real_,

72 getDesignInverseNormal

optimizationCriterion = c("ASNH1", "ASNIFH1", "ASNsum"),
gammaA = NA_real_,
typeBetaSpending = c("none", "bsP", "bsOF", "bsKD", "bsHSD", "bsUser"),
userAlphaSpending = NA_real_,
userBetaSpending = NA_real_,
gammaB = NA_real_,
bindingFutility = NA,
betaAdjustment = NA,
constantBoundsHP = 3,
twoSidedPower = NA,
tolerance = 1e-08

)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 20 for group sequential or inverse
normal and 6 for Fisher combination test designs.

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

beta Type II error rate, necessary for providing sample size calculations (e.g., getSampleSizeMeans()),
beta spending function designs, or optimum designs, default is 0.20. Must be a
positive numeric of length 1.

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

informationRates

The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax.

futilityBounds The futility bounds, defined on the test statistic z scale (numeric vector of length
kMax - 1).

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Pampallona & Tsiatis
("PT"), Haybittle & Peto ("HP"), Optimum design within Wang & Tsiatis class
("WToptimum"), O’Brien & Fleming type alpha spending ("asOF"), Pocock type
alpha spending ("asP"), Kim & DeMets alpha spending ("asKD"), Hwang, Shi
& DeCani alpha spending ("asHSD"), user defined alpha spending ("asUser"),
no early efficacy stop ("noEarlyEfficacy"), default is "OF".

deltaWT Delta for Wang & Tsiatis Delta class.

deltaPT1 Delta1 for Pampallona & Tsiatis class rejecting H0 boundaries.

deltaPT0 Delta0 for Pampallona & Tsiatis class rejecting H1 boundaries.
optimizationCriterion

Optimization criterion for optimum design within Wang & Tsiatis class ("ASNH1",
"ASNIFH1", "ASNsum"), default is "ASNH1", see details.

gammaA Parameter for alpha spending function.
typeBetaSpending

Type of beta spending. Type of of beta spending is one of the following: O’Brien
& Fleming type beta spending, Pocock type beta spending, Kim & DeMets

getDesignInverseNormal 73

beta spending, Hwang, Shi & DeCani beta spending, user defined beta spending
("bsOF", "bsP", "bsKD", "bsHSD", "bsUser", default is "none").

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

userBetaSpending

The user defined beta spending. Vector of length kMax containing the cumulative
beta-spending up to each interim stage.

gammaB Parameter for beta spending function.
bindingFutility

Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in
the sense that the study must be stopped if the futility condition was reached
(default is FALSE).

betaAdjustment For two-sided beta spending designs, if betaAdjustement = TRUE a linear ad-
justment of the beta spending values is performed if an overlapping of decision
regions for futility stopping at earlier stages occurs, otherwise no adjustment is
performed (default is TRUE).

constantBoundsHP

The constant bounds up to stage kMax - 1 for the Haybittle & Peto design (de-
fault is 3).

twoSidedPower For two-sided testing, if twoSidedPower = TRUE is specified the sample size
calculation is performed by considering both tails of the distribution. Default
is FALSE, i.e., it is assumed that one tail probability is equal to 0 or the power
should be directed to one part.

tolerance The numerical tolerance, default is 1e-08.

Details

Depending on typeOfDesign some parameters are specified, others not. For example, only if
typeOfDesign "asHSD" is selected, gammaA needs to be specified.

If an alpha spending approach was specified ("asOF", "asP", "asKD", "asHSD", or "asUser")
additionally a beta spending function can be specified to produce futility bounds.

For optimum designs, "ASNH1" minimizes the expected sample size under H1, "ASNIFH1" min-
imizes the sum of the maximum sample and the expected sample size under H1, and "ASNsum"
minimizes the sum of the maximum sample size, the expected sample size under a value midway
H0 and H1, and the expected sample size under H1.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

74 getDesignSet

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getDesignSet() for creating a set of designs to compare different designs.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignGroupSequential(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

Examples

Calculate two-sided critical values for a four-stage
Wang & Tsiatis design with Delta = 0.25 at level alpha = 0.05
getDesignInverseNormal(kMax = 4, alpha = 0.05, sided = 2,

typeOfDesign = "WT", deltaWT = 0.25)

Defines a two-stage design at one-sided alpha = 0.025 with provision of early stopping
if the one-sided p-value exceeds 0.5 at interim and no early stopping for efficacy.
The futility bound is non-binding.
getDesignInverseNormal(kMax = 2, typeOfDesign = "noEarlyEfficacy", futilityBounds = 0)

Not run:
Calculate one-sided critical values and binding futility bounds for a three-stage
design with alpha- and beta-spending functions according to Kim & DeMets with gamma = 2.5
(planned informationRates as specified, default alpha = 0.025 and beta = 0.2)
getDesignInverseNormal(kMax = 3, informationRates = c(0.3, 0.75, 1),

typeOfDesign = "asKD", gammaA = 2.5, typeBetaSpending = "bsKD",
gammaB = 2.5, bindingFutility = TRUE)

End(Not run)

getDesignSet Get Design Set

Description

Creates a trial design set object and returns it.

Usage

getDesignSet(...)

Arguments

... designs or design and one or more design parameters, e.g., deltaWT = c(0.1,
0.3, 0.4).

getDesignSet 75

• design The master design (optional, you need to specify an additional pa-
rameter that shall be varied).

• designs The designs to compare (optional, you need to specify the variable
variedParameters).

Details

Specify a master design and one or more design parameters or a list of designs.

Value

Returns a TrialDesignSet object. The following generics (R generic functions) are available for
this result object:

• names to obtain the field names,

• length to obtain the number of design,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Example 1
design <- getDesignGroupSequential(

alpha = 0.05, kMax = 6,
sided = 2, typeOfDesign = "WT", deltaWT = 0.1

)
designSet <- getDesignSet()
designSet$add(design = design, deltaWT = c(0.3, 0.4))
Not run:
if (require(ggplot2)) plot(designSet, type = 1)

End(Not run)

Example 2 (shorter script)
design <- getDesignGroupSequential(

alpha = 0.05, kMax = 6,
sided = 2, typeOfDesign = "WT", deltaWT = 0.1

)
designSet <- getDesignSet(design = design, deltaWT = c(0.3, 0.4))
Not run:
if (require(ggplot2)) plot(designSet, type = 1)

76 getEventProbabilities

End(Not run)

Example 3 (use of designs instead of design)
d1 <- getDesignGroupSequential(

alpha = 0.05, kMax = 2,
sided = 1, beta = 0.2, typeOfDesign = "asHSD",
gammaA = 0.5, typeBetaSpending = "bsHSD", gammaB = 0.5

)
d2 <- getDesignGroupSequential(

alpha = 0.05, kMax = 4,
sided = 1, beta = 0.2, typeOfDesign = "asP",
typeBetaSpending = "bsP"

)
designSet <- getDesignSet(

designs = c(d1, d2),
variedParameters = c("typeOfDesign", "kMax")

)
Not run:
if (require(ggplot2)) plot(designSet, type = 8, nMax = 20)

End(Not run)

getEventProbabilities Get Event Probabilities

Description

Returns the event probabilities for specified parameters at given time vector.

Usage

getEventProbabilities(
time,
...,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
kappa = 1,
piecewiseSurvivalTime = NA_real_,
lambda2 = NA_real_,
lambda1 = NA_real_,
allocationRatioPlanned = 1,
hazardRatio = NA_real_,
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12,
maxNumberOfSubjects = NA_real_

)

getEventProbabilities 77

Arguments

time A numeric vector with time values.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

maxNumberOfSubjects

If maxNumberOfSubjects > 0 is specified, the end of accrual at specified accrualIntensity
for the specified number of subjects is determined or accrualIntensity is cal-
culated at fixed end of accrual.

78 getFinalConfidenceInterval

Details

The function computes the overall event probabilities in a two treatment groups design. For details
of the parameters see getSampleSizeSurvival().

Value

Returns a EventProbabilities object. The following generics (R generic functions) are available
for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Calculate event probabilities for staggered subjects' entry, piecewisely defined
survival time and hazards, and plot it.
timeVector <- seq(0, 100, 1)
y <- getEventProbabilities(timeVector, accrualTime = c(0, 20, 60),

accrualIntensity = c(5, 20),
piecewiseSurvivalTime = c(0, 20, 80),
lambda2 = c(0.02, 0.06, 0.1),
hazardRatio = 2

)
Not run:
plot(timeVector, y$cumulativeEventProbabilities, type = 'l')

End(Not run)

getFinalConfidenceInterval

Get Final Confidence Interval

Description

Returns the final confidence interval for the parameter of interest. It is based on the prototype case,
i.e., the test for testing a mean for normally distributed variables.

getFinalConfidenceInterval 79

Usage

getFinalConfidenceInterval(
design,
dataInput,
...,
directionUpper = TRUE,
thetaH0 = NA_real_,
tolerance = 1e-06,
stage = NA_integer_

)

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

... Further (optional) arguments to be passed:

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing
rates and the hazard ratio. For testing rates, if normalApproximation =
FALSE is specified, the binomial test (one sample) or the exact test of Fisher
(two samples) is used for calculating the p-values. In the survival setting,
normalApproximation = FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

tolerance The numerical tolerance, default is 1e-06. Must be a positive numeric of length
1.

80 getFinalPValue

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

Depending on design and dataInput the final confidence interval and median unbiased estimate
that is based on the stage-wise ordering of the sample space will be calculated and returned. Addi-
tionally, a non-standardized ("general") version is provided, the estimated standard deviation must
be used to obtain the confidence interval for the parameter of interest.

For the inverse normal combination test design with more than two stages, a warning informs that
the validity of the confidence interval is theoretically shown only if no sample size change was
performed.

Value

Returns a list containing

• finalStage,

• medianUnbiased,

• finalConfidenceInterval,

• medianUnbiasedGeneral, and

• finalConfidenceIntervalGeneral.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalPValue(), getRepeatedConfidenceIntervals(),
getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getFinalConfidenceInterval(design, dataInput = data)

End(Not run)

getFinalPValue Get Final P Value

Description

Returns the final p-value for given stage results.

getGroupSequentialProbabilities 81

Usage

getFinalPValue(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Only available for backward compatibility.

Details

The calculation of the final p-value is based on the stage-wise ordering of the sample space. This
enables the calculation for both the non-adaptive and the adaptive case. For Fisher’s combination
test, it is available for kMax = 2 only.

Value

Returns a list containing

• finalStage,

• pFinal.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getFinalPValue(getStageResults(design, dataInput = data))

End(Not run)

getGroupSequentialProbabilities

Get Group Sequential Probabilities

Description

Calculates probabilities in the group sequential setting.

Usage

getGroupSequentialProbabilities(decisionMatrix, informationRates)

82 getGroupSequentialProbabilities

Arguments

decisionMatrix A matrix with either 2 or 4 rows and kMax = length(informationRates) columns,
see details.

informationRates

The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax.

Details

Given a sequence of information rates (fixing the correlation structure), and decisionMatrix with
either 2 or 4 rows and kMax = length(informationRates) columns, this function calculates a proba-
bility matrix containing, for two rows, the probabilities:
P(Z_1 <- l_1), P(l_1 <- Z_1 < u_1, Z_2 < l_1),..., P(l_kMax-1 <- Z_kMax-1 < u_kMax-1, Z_kMax
< l_l_kMax)
P(Z_1 <- u_1), P(l_1 <- Z_1 < u_1, Z_2 < u_1),..., P(l_kMax-1 <- Z_kMax-1 < u_kMax-1, Z_kMax
< u_l_kMax)
P(Z_1 <- Inf), P(l_1 <- Z_1 < u_1, Z_2 < Inf),..., P(l_kMax-1 <- Z_kMax-1 < u_kMax-1, Z_kMax
< Inf)
with continuation matrix
l_1,...,l_kMax
u_1,...,u_kMax
For 4 rows, the continuation region contains of two regions and the probability matrix is obtained
analogously (cf., Wassmer and Brannath, 2016).

Value

Returns a numeric matrix containing the probabilities described in the details section.

See Also

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignGroupSequential(), getDesignInverseNormal(), getPowerAndAverageSampleNumber()

Examples

Calculate Type I error rates in the two-sided group sequential setting when
performing kMax interim stages with constant critical boundaries at level alpha:
alpha <- 0.05
kMax <- 10
decisionMatrix <- matrix(c(

rep(-qnorm(1 - alpha / 2), kMax),
rep(qnorm(1 - alpha / 2), kMax)

), nrow = 2, byrow = TRUE)
informationRates <- (1:kMax) / kMax
probs <- getGroupSequentialProbabilities(decisionMatrix, informationRates)
cumsum(probs[3,] - probs[2,] + probs[1,])

Do the same for a one-sided design without futility boundaries:
decisionMatrix <- matrix(c(

rep(-Inf, kMax),
rep(qnorm(1 - alpha), kMax)

), nrow = 2, byrow = TRUE)
informationRates <- (1:kMax) / kMax
probs <- getGroupSequentialProbabilities(decisionMatrix, informationRates)

getLambdaStepFunction 83

cumsum(probs[3,] - probs[2,])

Check that two-sided Pampallona and Tsiatis boundaries with binding
futility bounds obtain Type I error probabilities equal to alpha:
x <- getDesignGroupSequential(

alpha = 0.05, beta = 0.1, kMax = 3, typeOfDesign = "PT",
deltaPT0 = 0, deltaPT1 = 0.4, sided = 2, bindingFutility = TRUE

)
dm <- matrix(c(

-x$criticalValues, -x$futilityBounds, 0,
x$futilityBounds, 0, x$criticalValues

), nrow = 4, byrow = TRUE)
dm[is.na(dm)] <- 0
probs <- getGroupSequentialProbabilities(

decisionMatrix = dm, informationRates = (1:3) / 3
)
sum(probs[5,] - probs[4,] + probs[1,])

Check the Type I error rate decrease when using non-binding futility bounds:
x <- getDesignGroupSequential(

alpha = 0.05, beta = 0.1, kMax = 3, typeOfDesign = "PT",
deltaPT0 = 0, deltaPT1 = 0.4, sided = 2, bindingFutility = FALSE

)
dm <- matrix(c(

-x$criticalValues, -x$futilityBounds, 0,
x$futilityBounds, 0, x$criticalValues

), nrow = 4, byrow = TRUE)
dm[is.na(dm)] <- 0
probs <- getGroupSequentialProbabilities(

decisionMatrix = dm, informationRates = (1:3) / 3
)
sum(probs[5,] - probs[4,] + probs[1,])

getLambdaStepFunction Get Lambda Step Function

Description

Calculates the lambda step values for a given time vector.

Usage

getLambdaStepFunction(timeValues, ..., piecewiseSurvivalTime, piecewiseLambda)

Arguments

timeValues A numeric vector that specifies the time values for which the lambda step values
shall be calculated.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

piecewiseSurvivalTime

A numeric vector that specifies the time intervals for the piecewise definition of
the exponential survival time cumulative distribution function (see details).

84 getLogLevel

piecewiseLambda

A numeric vector that specifies the assumed hazard rate in the treatment group.

Details

The first element of the vector piecewiseSurvivalTime must be equal to 0. This function is used
for plotting of sample size survival results (cf., plot, type = 13 and type = 14).

Value

A numeric vector containing the lambda step values that corresponds to the specified time values.

getLogLevel Get Log Level

Description

Returns the current rpact log level.

Usage

getLogLevel()

Details

This function gets the log level of the rpact internal log message system.

Value

Returns a character of length 1 specifying the current log level.

See Also

• setLogLevel() for setting the log level,

• resetLogLevel() for resetting the log level to default.

Examples

show current log level
getLogLevel()

getLongFormat 85

getLongFormat Get Long Format

Description

Returns the specified dataset as a data.frame in so-called long format.

Usage

getLongFormat(dataInput)

Details

In the long format (narrow, stacked), the data are presented with one column containing all the
values and another column listing the context of the value, i.e., the data for the different groups are
in one column and the dataset contains an additional "group" column.

Value

A data.frame will be returned.

See Also

getWideFormat() for returning the dataset as a data.frame in wide format.

getNumberOfSubjects Get Number Of Subjects

Description

Returns the number of recruited subjects at given time vector.

Usage

getNumberOfSubjects(
time,
...,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
maxNumberOfSubjects = NA_real_

)

86 getNumberOfSubjects

Arguments

time A numeric vector with time values.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

maxNumberOfSubjects

If maxNumberOfSubjects > 0 is specified, the end of accrual at specified accrualIntensity
for the specified number of subjects is determined or accrualIntensity is cal-
culated at fixed end of accrual.

Details

Calculate number of subjects over time range at given accrual time vector and accrual intensity.
Intensity can either be defined in absolute or relative terms (for the latter, maxNumberOfSubjects
needs to be defined)
The function is used by getSampleSizeSurvival().

Value

Returns a NumberOfSubjects object. The following generics (R generic functions) are available
for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

AccrualTime for defining the accrual time.

getObservedInformationRates 87

Examples

getNumberOfSubjects(time = seq(10, 70, 10), accrualTime = c(0, 20, 60),
accrualIntensity = c(5, 20))

getNumberOfSubjects(time = seq(10, 70, 10), accrualTime = c(0, 20, 60),
accrualIntensity = c(0.1, 0.4), maxNumberOfSubjects = 900)

getObservedInformationRates

Get Observed Information Rates

Description

Recalculates the observed information rates from the specified dataset.

Usage

getObservedInformationRates(
dataInput,
...,
maxInformation = NULL,
informationEpsilon = NULL,
stage = NA_integer_

)

Arguments

dataInput The dataset for which the information rates shall be recalculated.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

maxInformation Positive integer value specifying the maximum information.
informationEpsilon

Positive integer value specifying the absolute information epsilon, which de-
fines the maximum distance from the observed information to the maximum
information that causes the final analysis. Updates at the final analysis in case
the observed information at the final analysis is smaller ("under-running") than
the planned maximum information maxInformation, default is 0. Alternatively,
a floating-point number > 0 and < 1 can be specified to define a relative infor-
mation epsilon.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

For means and rates the maximum information is the maximum number of subjects or the relative
proportion if informationEpsilon < 1; for survival data it is the maximum number of events or
the relative proportion if informationEpsilon < 1.

88 getOutputFormat

Value

Returns a list that summarizes the observed information rates.

See Also

• getAnalysisResults() for using getObservedInformationRates() implicit,

• www.rpact.org/vignettes/planning/rpact_boundary_update_example

Examples

Absolute information epsilon:
decision rule 45 >= 46 - 1, i.e., under-running
data <- getDataset(

overallN = c(22, 45),
overallEvents = c(11, 28)

)
getObservedInformationRates(data,

maxInformation = 46, informationEpsilon = 1
)

Relative information epsilon:
last information rate = 45/46 = 0.9783,
is > 1 - 0.03 = 0.97, i.e., under-running
data <- getDataset(

overallN = c(22, 45),
overallEvents = c(11, 28)

)
getObservedInformationRates(data,

maxInformation = 46, informationEpsilon = 0.03
)

getOutputFormat Get Output Format

Description

With this function the format of the standard outputs of all rpact objects can be shown and written
to a file.

Usage

getOutputFormat(
parameterName = NA_character_,
...,
file = NA_character_,
default = FALSE,
fields = TRUE

)

https://www.rpact.org/vignettes/planning/rpact_boundary_update_example/

getOutputFormat 89

Arguments

parameterName The name of the parameter whose output format shall be returned. Leave the
default NA_character_ if the output format of all parameters shall be returned.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

file An optional file name where to write the output formats (see Details for more
information).

default If TRUE the default output format of the specified parameter(s) will be returned,
default is FALSE.

fields If TRUE the names of all affected object fields will be displayed, default is TRUE.

Details

Output formats can be written to a text file by specifying a file. See setOutputFormat()() to
learn how to read a formerly saved file.

Note that the parameterName must not match exactly, e.g., for p-values the following parameter
names will be recognized amongst others:

1. p value

2. p.values

3. p-value

4. pValue

5. rpact.output.format.p.value

Value

A named list of output formats.

See Also

Other output formats: setOutputFormat()

Examples

show output format of p values
getOutputFormat("p.value")
Not run:
set new p value output format
setOutputFormat("p.value", digits = 5, nsmall = 5)

show sample sizes as smallest integers not less than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "ceiling")
getSampleSizeMeans()

show sample sizes as smallest integers not greater than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "floor")
getSampleSizeMeans()

set new sample size output format without round function
setOutputFormat("sample size", digits = 2, nsmall = 2)
getSampleSizeMeans()

90 getParameterName

reset sample size output format to default
setOutputFormat("sample size")
getSampleSizeMeans()
getOutputFormat("sample size")

End(Not run)

getParameterCaption Get Parameter Caption

Description

Returns the parameter caption for a given object and parameter name.

Usage

getParameterCaption(obj, parameterName)

Details

This function identifies and returns the caption that will be used in print outputs of an rpact result
object.

Value

Returns a character of specifying the corresponding caption of a given parameter name. Returns
NULL if the specified parameterName does not exist.

See Also

getParameterName() for getting the parameter name for a given caption.

Examples

getParameterCaption(getDesignInverseNormal(), "kMax")

getParameterName Get Parameter Name

Description

Returns the parameter name for a given object and parameter caption.

Usage

getParameterName(obj, parameterCaption)

Details

This function identifies and returns the parameter name for a given caption that will be used in print
outputs of an rpact result object.

getPerformanceScore 91

Value

Returns a character of specifying the corresponding name of a given parameter caption. Returns
NULL if the specified parameterCaption does not exist.

See Also

getParameterCaption() for getting the parameter caption for a given name.

Examples

getParameterName(getDesignInverseNormal(), "Maximum number of stages")

getPerformanceScore Get Performance Score

Description

Calculates the conditional performance score, its sub-scores and components according to Her-
rmann et al. (2020) for a given simulation result from a two-stage design. Larger (sub-)score and
component values refer to a better performance.

Usage

getPerformanceScore(simulationResult)

Arguments

simulationResult

A simulation result.

Details

The conditional performance score consists of two sub-scores, one for the sample size (subscore-
SampleSize) and one for the conditional power (subscoreConditionalPower). Each of those are
composed of a location (locationSampleSize, locationConditionalPower) and variation component
(variationSampleSize, variationConditionalPower). The term conditional refers to an evaluation
perspective where the interim results suggest a trial continuation with a second stage. The score can
take values between 0 and 1. More details on the performance score can be found in Herrmann et
al. (2020).

Author(s)

Stephen Schueuerhuis

92 getPiecewiseSurvivalTime

Examples

Not run:
Example from Table 3 in "A new conditional performance score for
the evaluation of adaptive group sequential designs with samplesize
recalculation from Herrmann et al 2023", p.2097 for
Observed Conditional Power approach and Delta = 0.5

Create two-stage Pocock design with binding futility boundary at 0
design <- getDesignGroupSequential(

kMax = 2, typeOfDesign = "P",
futilityBounds = 0, bindingFutility = TRUE)

Initialize sample sizes and effect;
Sample sizes are referring to overall stage-wise sample sizes
n1 <- 100
n2 <- 100
nMax <- n1 + n2
alternative <- 0.5

Perform Simulation; nMax*1.5 defines the maximum
sample size for the additional stage
simulationResult <- getSimulationMeans(

design = design,
normalApproximation = TRUE,
thetaH0 = 0,
alternative = alternative,
plannedSubjects = c(n1, nMax),
minNumberOfSubjectsPerStage = c(NA_real_, 1),
maxNumberOfSubjectsPerStage = c(NA_real_, nMax * 1.5),
conditionalPower = 0.8,
directionUpper = TRUE,
maxNumberOfIterations = 1e05,
seed = 140

)

Calculate performance score
getPerformanceScore(simulationResult)

End(Not run)

getPiecewiseSurvivalTime

Get Piecewise Survival Time

Description

Returns a PiecewiseSurvivalTime object that contains the all relevant parameters of an exponen-
tial survival time cumulative distribution function. Use names to obtain the field names.

Usage

getPiecewiseSurvivalTime(
piecewiseSurvivalTime = NA_real_,

getPiecewiseSurvivalTime 93

...,
lambda1 = NA_real_,
lambda2 = NA_real_,
hazardRatio = NA_real_,
pi1 = NA_real_,
pi2 = NA_real_,
median1 = NA_real_,
median2 = NA_real_,
eventTime = 12,
kappa = 1,
delayedResponseAllowed = FALSE

)

Arguments

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function (see details).

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

median1 The assumed median survival time in the treatment group, there is no default.
median2 The assumed median survival time in the reference group, there is no default.

Must be a positive numeric of length 1.
eventTime The assumed time under which the event rates are calculated, default is 12.
kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape

of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

delayedResponseAllowed

If TRUE, delayed response is allowed; otherwise it will be validated that the
response is not delayed, default is FALSE.

94 getPiecewiseSurvivalTime

Value

Returns a PiecewiseSurvivalTime object. The following generics (R generic functions) are avail-
able for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

getPiecewiseSurvivalTime(lambda2 = 0.5, hazardRatio = 0.8)

getPiecewiseSurvivalTime(lambda2 = 0.5, lambda1 = 0.4)

getPiecewiseSurvivalTime(pi2 = 0.5, hazardRatio = 0.8)

getPiecewiseSurvivalTime(pi2 = 0.5, pi1 = 0.4)

getPiecewiseSurvivalTime(pi1 = 0.3)

getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4)

getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6, 9),
lambda2 = c(0.025, 0.04, 0.015), hazardRatio = 0.8)

getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6, 9),
lambda2 = c(0.025, 0.04, 0.015),
lambda1 = c(0.025, 0.04, 0.015) * 0.8)

pwst <- getPiecewiseSurvivalTime(list(
"0 - <6" = 0.025,
"6 - <9" = 0.04,
"9 - <15" = 0.015,
"15 - <21" = 0.01,
">=21" = 0.007), hazardRatio = 0.75)

pwst

getPlotSettings 95

Not run:
The object created by getPiecewiseSurvivalTime() can be used directly in
getSampleSizeSurvival():
getSampleSizeSurvival(piecewiseSurvivalTime = pwst)

The object created by getPiecewiseSurvivalTime() can be used directly in
getPowerSurvival():
getPowerSurvival(piecewiseSurvivalTime = pwst,

maxNumberOfEvents = 40, maxNumberOfSubjects = 100)

End(Not run)

getPlotSettings Get Plot Settings

Description

Returns a plot settings object.

Usage

getPlotSettings(
lineSize = 0.8,
pointSize = 3,
pointColor = NA_character_,
mainTitleFontSize = 14,
axesTextFontSize = 10,
legendFontSize = 11,
scalingFactor = 1

)

Arguments

lineSize The line size, default is 0.8.

pointSize The point size, default is 3.

pointColor The point color (character), default is NA_character_.
mainTitleFontSize

The main title font size, default is 14.
axesTextFontSize

The axes text font size, default is 10.

legendFontSize The legend font size, default is 11.

scalingFactor The scaling factor, default is 1.

Details

Returns an object of class PlotSettings that collects typical plot settings.

96 getPowerAndAverageSampleNumber

getPowerAndAverageSampleNumber

Get Power And Average Sample Number

Description

Returns the power and average sample number of the specified design.

Usage

getPowerAndAverageSampleNumber(design, theta = seq(-1, 1, 0.02), nMax = 100)

Arguments

design The trial design.

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

nMax The maximum sample size. Must be a positive integer of length 1.

Details

This function returns the power and average sample number (ASN) of the specified design for
the prototype case which is testing H0: mu = mu0 in a one-sample design. theta represents the
standardized effect (mu - mu0) / sigma and power and ASN is calculated for maximum sample
size nMax. For other designs than the one-sample test of a mean the standardized effect needs to be
adjusted accordingly.

Value

Returns a PowerAndAverageSampleNumberResult object. The following generics (R generic func-
tions) are available for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignGroupSequential(), getDesignInverseNormal(), getGroupSequentialProbabilities()

getPowerCounts 97

Examples

Calculate power, stopping probabilities, and expected sample
size for the default design with specified theta and nMax
getPowerAndAverageSampleNumber(

getDesignGroupSequential(),
theta = seq(-1, 1, 0.5), nMax = 100)

getPowerCounts Get Power Counts

Description

Returns the power, stopping probabilities, and expected sample size for testing mean rates for neg-
ative binomial distributed event numbers in two samples at given sample sizes.

Usage

getPowerCounts(
design = NULL,
...,
directionUpper = NA,
maxNumberOfSubjects = NA_real_,
lambda1 = NA_real_,
lambda2 = NA_real_,
lambda = NA_real_,
theta = NA_real_,
thetaH0 = 1,
overdispersion = 0,
fixedExposureTime = NA_real_,
accrualTime = NA_real_,
accrualIntensity = NA_real_,
followUpTime = NA_real_,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

98 getPowerCounts

lambda1 A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the active treatment group, there is no default.

lambda2 A numeric value that represents the assumed rate of a homogeneous Poisson
process in the control group, there is no default.

lambda A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the pooled treatment groups, there is no default.

theta A numeric value or vector that represents the assumed mean ratios lambda1/lambda2
of a homogeneous Poisson process, there is no default.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

overdispersion A numeric value that represents the assumed overdispersion of the negative bi-
nomial distribution, default is 0.

fixedExposureTime

If specified, the fixed time of exposure per subject for count data, there is no
default.

accrualTime If specified, the assumed accrual time interval(s) for the study, there is no de-
fault.

accrualIntensity

If specified, the assumed accrual intensities for the study, there is no default.

followUpTime If specified, The assumed (additional) follow-up time for the study, there is no
default. The total study duration is accrualTime + followUpTime.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

Details

At given design the function calculates the power, stopping probabilities, and expected sample
size for testing the ratio of two mean rates of negative binomial distributed event numbers in two
samples at given maximum sample size and effect. The power calculation is performed either for
a fixed exposure time or a variable exposure time with fixed follow-up where the information over

getPowerCounts 99

the stages is calculated according to the specified information rate in the design. Additionally, an
allocation ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups. A null hypothesis value thetaH0 can also be specified.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerMeans(), getPowerRates(), getPowerSurvival()

Examples

Fixed sample size trial where a therapy is assumed to decrease the
exacerbation rate from 1.4 to 1.05 (25% decrease) within an
observation period of 1 year, i.e., each subject has a equal
follow-up of 1 year.
Calculate power at significance level 0.025 at given sample size = 180
for a range of lambda1 values if the overdispersion is assumed to be
equal to 0.5, is obtained by
getPowerCounts(alpha = 0.025, lambda1 = seq(1, 1.4, 0.05), lambda2 = 1.4,

maxNumberOfSubjects = 180, overdispersion = 0.5, fixedExposureTime = 1)
Not run:
Group sequential alpha and beta spending function design with O'Brien and
Fleming type boundaries: Power and test characteristics for N = 286,
under the assumption of a fixed exposure time, and for a range of
lambda1 values:
getPowerCounts(design = getDesignGroupSequential(

kMax = 3, alpha = 0.025, beta = 0.2,
typeOfDesign = "asOF", typeBetaSpending = "bsOF"),

lambda1 = seq(0.17, 0.23, 0.01), lambda2 = 0.3,
directionUpper = FALSE, overdispersion = 1, maxNumberOfSubjects = 286,
fixedExposureTime = 12, accrualTime = 6)

Group sequential design alpha spending function design with O'Brien and
Fleming type boundaries: Power and test characteristics for N = 1976,
under variable exposure time with uniform recruitment over 1.25 months,

100 getPowerMeans

study time (accrual + followup) = 4 (lambda1, lambda2, and overdispersion
as specified, no futility stopping):
getPowerCounts(design = getDesignGroupSequential(

kMax = 3, alpha = 0.025, beta = 0.2, typeOfDesign = "asOF"),
lambda1 = seq(0.08, 0.09, 0.0025), lambda2 = 0.125,
overdispersion = 5, directionUpper = FALSE, maxNumberOfSubjects = 1976,
followUpTime = 2.75, accrualTime = 1.25)

End(Not run)

getPowerMeans Get Power Means

Description

Returns the power, stopping probabilities, and expected sample size for testing means in one or two
samples at given maximum sample size.

Usage

getPowerMeans(
design = NULL,
...,
groups = 2L,
normalApproximation = FALSE,
meanRatio = FALSE,
thetaH0 = ifelse(meanRatio, 1, 0),
alternative = seq(0, 1, 0.2),
stDev = 1,
directionUpper = NA,
maxNumberOfSubjects = NA_real_,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. If TRUE, the variance is assumed to be
known, default is FALSE, i.e., the calculations are performed with the t distribu-
tion.

meanRatio If TRUE, the sample size for one-sided testing of H0: mu1 / mu2 = thetaH0 is
calculated, default is FALSE.

getPowerMeans 101

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

alternative The alternative hypothesis value for testing means. This can be a vector of as-
sumed alternatives, default is seq(0, 1, 0.2) (power calculations) or seq(0.2,
1, 0.2) (sample size calculations).

stDev The standard deviation under which the sample size or power calculation is per-
formed, default is 1. If meanRatio = TRUE is specified, stDev defines the coeffi-
cient of variation sigma / mu2. Must be a positive numeric of length 1.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

Details

At given design the function calculates the power, stopping probabilities, and expected sample size
for testing means at given sample size. In a two treatment groups design, additionally, an allocation
ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects in the two treatment
groups. A null hypothesis value thetaH0 != 0 for testing the difference of two means or thetaH0 !=
1 for testing the ratio of two means can be specified. For the specified sample size, critical bounds
and stopping for futility bounds are provided at the effect scale (mean, mean difference, or mean
ratio, respectively)

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

102 getPowerRates

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerCounts(), getPowerRates(), getPowerSurvival()

Examples

Calculate the power, stopping probabilities, and expected sample size
for testing H0: mu1 - mu2 = 0 in a two-armed design against a range of
alternatives H1: mu1 - m2 = delta, delta = (0, 1, 2, 3, 4, 5),
standard deviation sigma = 8, maximum sample size N = 80 (both treatment
arms), and an allocation ratio n1/n2 = 2. The design is a three stage
O'Brien & Fleming design with non-binding futility bounds (-0.5, 0.5)
for the two interims. The computation takes into account that the t test
is used (normalApproximation = FALSE).
getPowerMeans(getDesignGroupSequential(alpha = 0.025,

sided = 1, futilityBounds = c(-0.5, 0.5)),
groups = 2, alternative = c(0:5), stDev = 8,
normalApproximation = FALSE, maxNumberOfSubjects = 80,
allocationRatioPlanned = 2)

getPowerRates Get Power Rates

Description

Returns the power, stopping probabilities, and expected sample size for testing rates in one or two
samples at given maximum sample size.

Usage

getPowerRates(
design = NULL,
...,
groups = 2L,
riskRatio = FALSE,

getPowerRates 103

thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = seq(0.2, 0.5, 0.1),
pi2 = 0.2,
directionUpper = NA,
maxNumberOfSubjects = NA_real_,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.

riskRatio If TRUE, the power for one-sided testing of H0: pi1 / pi2 = thetaH0 is calcu-
lated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

pi1 A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(0.2, 0.5, 0.1)
(power calculations and simulations) or seq(0.4, 0.6, 0.1) (sample size cal-
culations).

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

104 getPowerRates

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

Details

At given design the function calculates the power, stopping probabilities, and expected sample size
for testing rates at given maximum sample size. The sample sizes over the stages are calculated
according to the specified information rate in the design. In a two treatment groups design, addi-
tionally, an allocation ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects
in the two treatment groups. If a null hypothesis value thetaH0 != 0 for testing the difference of
two rates or thetaH0 != 1 for testing the risk ratio is specified, the formulas according to Farring-
ton & Manning (Statistics in Medicine, 1990) are used (only one-sided testing). Critical bounds
and stopping for futility bounds are provided at the effect scale (rate, rate difference, or rate ratio,
respectively). For the two-sample case, the calculation here is performed at fixed pi2 as given as
argument in the function. Note that the power calculation for rates is always based on the normal
approximation.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerCounts(), getPowerMeans(), getPowerSurvival()

Examples

Calculate the power, stopping probabilities, and expected sample size in a
two-armed design at given maximum sample size N = 200 in a three-stage
O'Brien & Fleming design with information rate vector (0.2,0.5,1),
non-binding futility boundaries (0,0), i.e., the study stops for futility
if the p-value exceeds 0.5 at interm, and allocation ratio = 2 for a range

getPowerSurvival 105

of pi1 values when testing H0: pi1 - pi2 = -0.1:
getPowerRates(getDesignGroupSequential(informationRates = c(0.2, 0.5, 1),

futilityBounds = c(0, 0)), groups = 2, thetaH0 = -0.1,
pi1 = seq(0.3, 0.6, 0.1), directionUpper = FALSE,
pi2 = 0.7, allocationRatioPlanned = 2, maxNumberOfSubjects = 200)

Not run:
Calculate the power, stopping probabilities, and expected sample size in a single
arm design at given maximum sample size N = 60 in a three-stage two-sided
O'Brien & Fleming design with information rate vector (0.2, 0.5,1)
for a range of pi1 values when testing H0: pi = 0.3:
getPowerRates(getDesignGroupSequential(informationRates = c(0.2, 0.5,1),

sided = 2), groups = 1, thetaH0 = 0.3, pi1 = seq(0.3, 0.5, 0.05),
maxNumberOfSubjects = 60)

End(Not run)

getPowerSurvival Get Power Survival

Description

Returns the power, stopping probabilities, and expected sample size for testing the hazard ratio in a
two treatment groups survival design.

Usage

getPowerSurvival(
design = NULL,
...,
typeOfComputation = c("Schoenfeld", "Freedman", "HsiehFreedman"),
thetaH0 = 1,
directionUpper = NA,
pi1 = NA_real_,
pi2 = NA_real_,
lambda1 = NA_real_,
lambda2 = NA_real_,
median1 = NA_real_,
median2 = NA_real_,
kappa = 1,
hazardRatio = NA_real_,
piecewiseSurvivalTime = NA_real_,
allocationRatioPlanned = 1,
eventTime = 12,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
maxNumberOfSubjects = NA_real_,
maxNumberOfEvents = NA_real_,
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12

)

106 getPowerSurvival

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

typeOfComputation

Three options are available: "Schoenfeld", "Freedman", "HsiehFreedman",
the default is "Schoenfeld". For details, see Hsieh (Statistics in Medicine,
1992). For non-inferiority testing (i.e., thetaH0 != 1), only Schoenfeld’s for-
mula can be used.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

median1 The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,

getPowerSurvival 107

i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. If accrual time and accrual
intensity are specified, this will be calculated. Must be a positive integer of
length 1.

maxNumberOfEvents

maxNumberOfEvents > 0 is the maximum number of events, it determines the
power of the test and needs to be specified.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

Details

At given design the function calculates the power, stopping probabilities, and expected sample
size at given number of events and number of subjects. It also calculates the time when the re-
quired events are expected under the given assumptions (exponentially, piecewise exponentially, or
Weibull distributed survival times and constant or non-constant piecewise accrual). Additionally,
an allocation ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

108 getPowerSurvival

The formula of Kim & Tsiatis (Biometrics, 1990) is used to calculate the expected number of events
under the alternative (see also Lakatos & Lan, Statistics in Medicine, 1992). These formulas are
generalized to piecewise survival times and non-constant piecewise accrual over time.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.
accrualIntensity itself is a value or a vector (depending on the length of accrualTime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the relative inten-
sity how subjects enter the trial. For example, accrualIntensity = c(0.1, 0.2) specifies that in
the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = 0.1 meaning that the absolute accrual intensity will
be calculated.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all

getPowerSurvival 109

the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerCounts(), getPowerMeans(), getPowerRates()

Examples

Fixed sample size with minimum required definitions, pi1 = c(0.4,0.5,0.5) and
pi2 = 0.2 at event time 12, accrual time 12 and follow-up time 6 as default
getPowerSurvival(maxNumberOfEvents = 40, maxNumberOfSubjects = 200)
Not run:
Four stage O'Brien & Fleming group sequential design with minimum required
definitions, pi1 = c(0.4,0.5,0.5) and pi2 = 0.2 at event time 12,
accrual time 12 and follow-up time 6 as default
getPowerSurvival(design = getDesignGroupSequential(kMax = 4),

maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

For fixed sample design, determine necessary accrual time if 200 subjects and
30 subjects per time unit can be recruited
getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0),

accrualIntensity = 30, maxNumberOfSubjects = 200)

Determine necessary accrual time if 200 subjects and if the first 6 time units
20 subjects per time unit can be recruited, then 30 subjects per time unit
getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0, 6),

accrualIntensity = c(20, 30), maxNumberOfSubjects = 200)

Determine maximum number of Subjects if the first 6 time units 20 subjects per
time unit can be recruited, and after 10 time units 30 subjects per time unit
getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0, 6, 10),

accrualIntensity = c(20, 30))

Specify accrual time as a list
at <- list(

"0 - <6" = 20,
"6 - Inf" = 30)

getPowerSurvival(maxNumberOfEvents = 40, accrualTime = at, maxNumberOfSubjects = 200)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30)

getPowerSurvival(maxNumberOfEvents = 40, accrualTime = at)

Specify effect size for a two-stage group design with O'Brien & Fleming boundaries
Effect size is based on event rates at specified event time, directionUpper = FALSE
needs to be specified because it should be shown that hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential(kMax = 2), pi1 = 0.2, pi2 = 0.3,

eventTime = 24, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

Effect size is based on event rate at specified event time for the reference group
and hazard ratio, directionUpper = FALSE needs to be specified
because it should be shown that hazard ratio < 1

110 getRawData

getPowerSurvival(design = getDesignGroupSequential(kMax = 2), hazardRatio = 0.5,
pi2 = 0.3, eventTime = 24, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

Effect size is based on hazard rate for the reference group and hazard ratio,
directionUpper = FALSE needs to be specified because it should be shown that
hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential(kMax = 2), hazardRatio = 0.5,

lambda2 = 0.02, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

Specification of piecewise exponential survival time and hazard ratios
getPowerSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01,0.02,0.04),
hazardRatio = c(1.5, 1.8, 2), maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time as list and hazard ratios
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getPowerSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2),
maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time for both treatment arms
getPowerSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015,0.03,0.06), maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time as a list
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getPowerSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2),
maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specify effect size based on median survival times
getPowerSurvival(median1 = 5, median2 = 3,

maxNumberOfEvents = 40, maxNumberOfSubjects = 200, directionUpper = FALSE)

Specify effect size based on median survival times of
Weibull distribtion with kappa = 2
getPowerSurvival(median1 = 5, median2 = 3, kappa = 2,

maxNumberOfEvents = 40, maxNumberOfSubjects = 200, directionUpper = FALSE)

End(Not run)

getRawData Get Simulation Raw Data for Survival

getRawData 111

Description

Returns the raw survival data which was generated for simulation.

Usage

getRawData(x, aggregate = FALSE)

Arguments

x A SimulationResults object created by getSimulationSurvival().

aggregate Logical. If TRUE the raw data will be aggregated similar to the result of getData(),
default is FALSE.

Details

This function works only if getSimulationSurvival() was called with a
maxNumberOfRawDatasetsPerStage > 0 (default is 0).

This function can be used to get the simulated raw data from a simulation results object obtained
by getSimulationSurvival(). Note that getSimulationSurvival() must called before with
maxNumberOfRawDatasetsPerStage > 0. The data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stopStage: The stage of stopping.

3. subjectId: The subject id (increasing number 1, 2, 3, ...)

4. accrualTime: The accrual time, i.e., the time when the subject entered the trial.

5. treatmentGroup: The treatment group number (1 or 2).

6. survivalTime: The survival time of the subject.

7. dropoutTime: The dropout time of the subject (may be NA).

8. observationTime: The specific observation time.

9. timeUnderObservation: The time under observation is defined as follows:

if (event == TRUE) {
timeUnderObservation <- survivalTime

} else if (dropoutEvent == TRUE) {
timeUnderObservation <- dropoutTime

} else {
timeUnderObservation <- observationTime - accrualTime

}

10. event: TRUE if an event occurred; FALSE otherwise.

11. dropoutEvent: TRUE if an dropout event occurred; FALSE otherwise.

Value

Returns a data.frame.

112 getRepeatedConfidenceIntervals

Examples

Not run:
results <- getSimulationSurvival(

pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50, maxNumberOfRawDatasetsPerStage = 5

)
rawData <- getRawData(results)
head(rawData)
dim(rawData)

End(Not run)

getRepeatedConfidenceIntervals

Get Repeated Confidence Intervals

Description

Calculates and returns the lower and upper limit of the repeated confidence intervals of the trial.

Usage

getRepeatedConfidenceIntervals(
design,
dataInput,
...,
directionUpper = TRUE,
tolerance = 1e-06,
stage = NA_integer_

)

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

... Further arguments to be passed to methods (cf., separate functions in "See Also"
below), e.g.,

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

getRepeatedConfidenceIntervals 113

intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple hypotheses. Five
options are available in multi-arm designs: "Dunnett", "Bonferroni",
"Simes", "Sidak", and "Hierarchical", default is "Dunnett". Four op-
tions are available in population enrichment designs: "SpiessensDebois"
(one subset only), "Bonferroni", "Simes", and "Sidak", default is "Simes".

varianceOption Defines the way to calculate the variance in multiple treat-
ment arms (> 2) or population enrichment designs for testing means. For
multiple arms, three options are available: "overallPooled", "pairwisePooled",
and "notPooled", default is "overallPooled". For enrichment designs,
the options are: "pooled", "pooledFromFull" (one subset only), and "notPooled",
default is "pooled".

stratifiedAnalysis For enrichment designs, typically a stratified analysis
should be chosen. For testing means and rates, also a non-stratified analysis
based on overall data can be performed. For survival data, only a stratified
analysis is possible (see Brannath et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

tolerance The numerical tolerance, default is 1e-06. Must be a positive numeric of length
1.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

The repeated confidence interval at a given stage of the trial contains the parameter values that are
not rejected using the specified sequential design. It can be calculated at each stage of the trial and
can thus be used as a monitoring tool.

The repeated confidence intervals are provided up to the specified stage.

Value

Returns a matrix with 2 rows and kMax columns containing the lower RCI limits in the first row
and the upper RCI limits in the second row, where each column represents a stage.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getRepeatedConfidenceIntervals(design, dataInput = data)

114 getRepeatedPValues

End(Not run)

getRepeatedPValues Get Repeated P Values

Description

Calculates the repeated p-values for a given test results.

Usage

getRepeatedPValues(stageResults, ..., tolerance = 1e-06)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

tolerance The numerical tolerance, default is 1e-06. Must be a positive numeric of length
1.

Details

The repeated p-value at a given stage of the trial is defined as the smallest significance level under
which at given test design the test results obtain rejection of the null hypothesis. It can be calculated
at each stage of the trial and can thus be used as a monitoring tool.

The repeated p-values are provided up to the specified stage.

In multi-arm trials, the repeated p-values are defined separately for each treatment comparison
within the closed testing procedure.

Value

Returns a numeric vector of length kMax or in case of multi-arm stage results a matrix (each
column represents a stage, each row a comparison) containing the repeated p values.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getStageResults(), getTestActions()

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getRepeatedPValues(getStageResults(design, dataInput = data))

getSampleSizeCounts 115

End(Not run)

getSampleSizeCounts Get Sample Size Counts

Description

Returns the sample size for testing the ratio of mean rates of negative binomial distributed event
numbers in two samples at given effect.

Usage

getSampleSizeCounts(
design = NULL,
...,
lambda1 = NA_real_,
lambda2 = NA_real_,
lambda = NA_real_,
theta = NA_real_,
thetaH0 = 1,
overdispersion = 0,
fixedExposureTime = NA_real_,
accrualTime = NA_real_,
accrualIntensity = NA_real_,
followUpTime = NA_real_,
maxNumberOfSubjects = NA_integer_,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

lambda1 A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the active treatment group, there is no default.

lambda2 A numeric value that represents the assumed rate of a homogeneous Poisson
process in the control group, there is no default.

lambda A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the pooled treatment groups, there is no default.

theta A numeric value or vector that represents the assumed mean ratios lambda1/lambda2
of a homogeneous Poisson process, there is no default.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

116 getSampleSizeCounts

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

overdispersion A numeric value that represents the assumed overdispersion of the negative bi-
nomial distribution, default is 0.

fixedExposureTime

If specified, the fixed time of exposure per subject for count data, there is no
default.

accrualTime If specified, the assumed accrual time interval(s) for the study, there is no de-
fault.

accrualIntensity

If specified, the assumed accrual intensities for the study, there is no default.

followUpTime If specified, The assumed (additional) follow-up time for the study, there is no
default. The total study duration is accrualTime + followUpTime.

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

Details

At given design the function calculates the information, and stage-wise and maximum sample size
for testing mean rates of negative binomial distributed event numbers in two samples at given effect.
The sample size calculation is performed either for a fixed exposure time or a variable exposure
time with fixed follow-up. For the variable exposure time case, at given maximum sample size the
necessary follow-up time is calculated. The planned calendar time of interim stages is calculated if
an accrual time is defined. Additionally, an allocation ratio = n1 / n2 can be specified where n1 and
n2 are the number of subjects in the two treatment groups. A null hypothesis value thetaH0 can
also be specified.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

getSampleSizeCounts 117

• print() to print the object,
• summary() to display a summary of the object,
• plot() to plot the object,
• as.data.frame() to coerce the object to a data.frame,
• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeMeans(), getSampleSizeRates(), getSampleSizeSurvival()

Examples

Fixed sample size trial where a therapy is assumed to decrease the
exacerbation rate from 1.4 to 1.05 (25% decrease) within an observation
period of 1 year, i.e., each subject has an equal follow-up of 1 year.
The sample size that yields 90% power at significance level 0.025 for
detecting such a difference, if the overdispersion is assumed to be
equal to 0.5, is obtained by
getSampleSizeCounts(alpha = 0.025, beta = 0.1, lambda2 = 1.4,

theta = 0.75, overdispersion = 0.5, fixedExposureTime = 1)
Not run:
Noninferiority test with blinded sample size reassessment to reproduce
Table 2 from Friede and Schmidli (2010):
getSampleSizeCounts(alpha = 0.025, beta = 0.2, lambda = 1, theta = 1,

thetaH0 = 1.15, overdispersion = 0.4, fixedExposureTime = 1)

Group sequential alpha and beta spending function design with O'Brien and
Fleming type boundaries: Estimate observation time under uniform
recruitment of patients over 6 months and a fixed exposure time of 12
months (lambda1, lambda2, and overdispersion as specified):
getSampleSizeCounts(design = getDesignGroupSequential(

kMax = 3, alpha = 0.025, beta = 0.2,
typeOfDesign = "asOF", typeBetaSpending = "bsOF"),

lambda1 = 0.2, lambda2 = 0.3, overdispersion = 1,
fixedExposureTime = 12, accrualTime = 6)

Group sequential alpha spending function design with O'Brien and Fleming
type boundaries: Sample size for variable exposure time with uniform
recruitment over 1.25 months and study time (accrual + followup) = 4
(lambda1, lambda2, and overdispersion as specified, no futility stopping):
getSampleSizeCounts(design = getDesignGroupSequential(

kMax = 3, alpha = 0.025, beta = 0.2, typeOfDesign = "asOF"),
lambda1 = 0.0875, lambda2 = 0.125, overdispersion = 5,
followUpTime = 2.75, accrualTime = 1.25)

End(Not run)

118 getSampleSizeMeans

getSampleSizeMeans Get Sample Size Means

Description

Returns the sample size for testing means in one or two samples.

Usage

getSampleSizeMeans(
design = NULL,
...,
groups = 2,
normalApproximation = FALSE,
meanRatio = FALSE,
thetaH0 = ifelse(meanRatio, 1, 0),
alternative = seq(0.2, 1, 0.2),
stDev = 1,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. If TRUE, the variance is assumed to be
known, default is FALSE, i.e., the calculations are performed with the t distribu-
tion.

meanRatio If TRUE, the sample size for one-sided testing of H0: mu1 / mu2 = thetaH0 is
calculated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

getSampleSizeMeans 119

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

alternative The alternative hypothesis value for testing means. This can be a vector of as-
sumed alternatives, default is seq(0, 1, 0.2) (power calculations) or seq(0.2,
1, 0.2) (sample size calculations).

stDev The standard deviation under which the sample size or power calculation is per-
formed, default is 1. If meanRatio = TRUE is specified, stDev defines the coeffi-
cient of variation sigma / mu2. Must be a positive numeric of length 1.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

Details

At given design the function calculates the stage-wise and maximum sample size for testing means.
In a two treatment groups design, additionally, an allocation ratio = n1 / n2 can be specified where
n1 and n2 are the number of subjects in the two treatment groups. A null hypothesis value thetaH0
!= 0 for testing the difference of two means or thetaH0 != 1 for testing the ratio of two means can
be specified. Critical bounds and stopping for futility bounds are provided at the effect scale (mean,
mean difference, or mean ratio, respectively) for each sample size calculation separately.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeCounts(), getSampleSizeRates(), getSampleSizeSurvival()

Examples

Calculate sample sizes in a fixed sample size parallel group design
with allocation ratio \code{n1 / n2 = 2} for a range of
alternative values 1, ..., 5 with assumed standard deviation = 3.5;
two-sided alpha = 0.05, power 1 - beta = 90%:

120 getSampleSizeRates

getSampleSizeMeans(alpha = 0.05, beta = 0.1, sided = 2, groups = 2,
alternative = seq(1, 5, 1), stDev = 3.5, allocationRatioPlanned = 2)

Not run:
Calculate sample sizes in a three-stage Pocock paired comparison design testing
H0: mu = 2 for a range of alternative values 3,4,5 with assumed standard
deviation = 3.5; one-sided alpha = 0.05, power 1 - beta = 90%:
getSampleSizeMeans(getDesignGroupSequential(typeOfDesign = "P", alpha = 0.05,

sided = 1, beta = 0.1), groups = 1, thetaH0 = 2,
alternative = seq(3, 5, 1), stDev = 3.5)

End(Not run)

getSampleSizeRates Get Sample Size Rates

Description

Returns the sample size for testing rates in one or two samples.

Usage

getSampleSizeRates(
design = NULL,
...,
groups = 2,
normalApproximation = TRUE,
riskRatio = FALSE,
thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = c(0.4, 0.5, 0.6),
pi2 = 0.2,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

If FALSE, the sample size for the case of one treatment group is calculated exactly
using the binomial distribution, default is TRUE.

riskRatio If TRUE, the sample size for one-sided testing of H0: pi1 / pi2 = thetaH0 is
calculated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

getSampleSizeRates 121

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

pi1 A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(0.2, 0.5, 0.1)
(power calculations and simulations) or seq(0.4, 0.6, 0.1) (sample size cal-
culations).

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

Details

At given design the function calculates the stage-wise and maximum sample size for testing rates.
In a two treatment groups design, additionally, an allocation ratio = n1 / n2 can be specified where
n1 and n2 are the number of subjects in the two treatment groups. If a null hypothesis value thetaH0
!= 0 for testing the difference of two rates or thetaH0 != 1 for testing the risk ratio is specified,
the sample size formula according to Farrington & Manning (Statistics in Medicine, 1990) is used.
Critical bounds and stopping for futility bounds are provided at the effect scale (rate, rate difference,
or rate ratio, respectively) for each sample size calculation separately. For the two-sample case, the
calculation here is performed at fixed pi2 as given as argument in the function.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

122 getSampleSizeSurvival

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeCounts(), getSampleSizeMeans(), getSampleSizeSurvival()

Examples

Calculate the stage-wise sample sizes, maximum sample sizes, and the optimum
allocation ratios for a range of pi1 values when testing
H0: pi1 - pi2 = -0.1 within a two-stage O'Brien & Fleming design;
alpha = 0.05 one-sided, power 1 - beta = 90%:
getSampleSizeRates(getDesignGroupSequential(kMax = 2, alpha = 0.05,

beta = 0.1), groups = 2, thetaH0 = -0.1, pi1 = seq(0.4, 0.55, 0.025),
pi2 = 0.4, allocationRatioPlanned = 0)

Not run:
Calculate the stage-wise sample sizes, maximum sample sizes, and the optimum
allocation ratios for a range of pi1 values when testing
H0: pi1 / pi2 = 0.80 within a three-stage O'Brien & Fleming design;
alpha = 0.025 one-sided, power 1 - beta = 90%:
getSampleSizeRates(getDesignGroupSequential(kMax = 3, alpha = 0.025,

beta = 0.1), groups = 2, riskRatio = TRUE, thetaH0 = 0.80,
pi1 = seq(0.3, 0.5, 0.025), pi2 = 0.3, allocationRatioPlanned = 0)

End(Not run)

getSampleSizeSurvival Get Sample Size Survival

Description

Returns the sample size for testing the hazard ratio in a two treatment groups survival design.

Usage

getSampleSizeSurvival(
design = NULL,
...,
typeOfComputation = c("Schoenfeld", "Freedman", "HsiehFreedman"),
thetaH0 = 1,
pi1 = NA_real_,
pi2 = NA_real_,
lambda1 = NA_real_,
lambda2 = NA_real_,
median1 = NA_real_,
median2 = NA_real_,

getSampleSizeSurvival 123

kappa = 1,
hazardRatio = NA_real_,
piecewiseSurvivalTime = NA_real_,
allocationRatioPlanned = NA_real_,
eventTime = 12,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
followUpTime = NA_real_,
maxNumberOfSubjects = NA_real_,
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

typeOfComputation

Three options are available: "Schoenfeld", "Freedman", "HsiehFreedman",
the default is "Schoenfeld". For details, see Hsieh (Statistics in Medicine,
1992). For non-inferiority testing (i.e., thetaH0 != 1), only Schoenfeld’s for-
mula can be used.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

124 getSampleSizeSurvival

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

median1 The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

followUpTime The assumed (additional) follow-up time for the study, default is 6. The total
study duration is accrualTime + followUpTime.

maxNumberOfSubjects

If maxNumberOfSubjects > 0 is specified, the follow-up time for the required
number of events is determined.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

getSampleSizeSurvival 125

Details

At given design the function calculates the number of events and an estimate for the necessary num-
ber of subjects for testing the hazard ratio in a survival design. It also calculates the time when the
required events are expected under the given assumptions (exponentially, piecewise exponentially,
or Weibull distributed survival times and constant or non-constant piecewise accrual). Additionally,
an allocation ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

Optional argument accountForObservationTimes: if accountForObservationTimes = TRUE, the
number of subjects is calculated assuming specific accrual and follow-up time, default is TRUE.

The formula of Kim & Tsiatis (Biometrics, 1990) is used to calculate the expected number of events
under the alternative (see also Lakatos & Lan, Statistics in Medicine, 1992). These formulas are
generalized to piecewise survival times and non-constant piecewise accrual over time.

Optional argument accountForObservationTimes: if accountForObservationTimes = FALSE,
only the event rates are used for the calculation of the maximum number of subjects.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.
accrualIntensity itself is a value or a vector (depending on the length of accrualTime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

126 getSampleSizeSurvival

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the relative inten-
sity how subjects enter the trial. For example, accrualIntensity = c(0.1, 0.2) specifies that in
the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = 0.1 meaning that the absolute accrual intensity will
be calculated.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeCounts(), getSampleSizeMeans(), getSampleSizeRates()

Examples

Fixed sample size trial with median survival 20 vs. 30 months in treatment and
reference group, respectively, alpha = 0.05 (two-sided), and power 1 - beta = 90%.
20 subjects will be recruited per month up to 400 subjects, i.e., accrual time
is 20 months.
getSampleSizeSurvival(alpha = 0.05, sided = 2, beta = 0.1, lambda1 = log(2) / 20,

lambda2 = log(2) / 30, accrualTime = c(0,20), accrualIntensity = 20)
Not run:
Fixed sample size with minimum required definitions, pi1 = c(0.4,0.5,0.6) and
pi2 = 0.2 at event time 12, accrual time 12 and follow-up time 6 as default,
only alpha = 0.01 is specified
getSampleSizeSurvival(alpha = 0.01)

Four stage O'Brien & Fleming group sequential design with minimum required
definitions, pi1 = c(0.4,0.5,0.6) and pi2 = 0.2 at event time 12,
accrual time 12 and follow-up time 6 as default
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 4))

For fixed sample design, determine necessary accrual time if 200 subjects and
30 subjects per time unit can be recruited
getSampleSizeSurvival(accrualTime = c(0), accrualIntensity = c(30),

maxNumberOfSubjects = 200)

Determine necessary accrual time if 200 subjects and if the first 6 time units
20 subjects per time unit can be recruited, then 30 subjects per time unit
getSampleSizeSurvival(accrualTime = c(0, 6), accrualIntensity = c(20, 30),

maxNumberOfSubjects = 200)

Determine maximum number of Subjects if the first 6 time units 20 subjects
per time unit can be recruited, and after 10 time units 30 subjects per time unit
getSampleSizeSurvival(accrualTime = c(0, 6, 10), accrualIntensity = c(20, 30))

Specify accrual time as a list
at <- list(

getSampleSizeSurvival 127

"0 - <6" = 20,
"6 - Inf" = 30)

getSampleSizeSurvival(accrualTime = at, maxNumberOfSubjects = 200)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30)

getSampleSizeSurvival(accrualTime = at)

Specify effect size for a two-stage group design with O'Brien & Fleming boundaries
Effect size is based on event rates at specified event time
needs to be specified because it should be shown that hazard ratio < 1
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

pi1 = 0.2, pi2 = 0.3, eventTime = 24)

Effect size is based on event rate at specified event
time for the reference group and hazard ratio
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

hazardRatio = 0.5, pi2 = 0.3, eventTime = 24)

Effect size is based on hazard rate for the reference group and hazard ratio
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

hazardRatio = 0.5, lambda2 = 0.02)

Specification of piecewise exponential survival time and hazard ratios
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
hazardRatio = c(1.5, 1.8, 2))

Specification of piecewise exponential survival time as a list and hazard ratios
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2))

Specification of piecewise exponential survival time for both treatment arms
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015, 0.03, 0.06))

Specification of piecewise exponential survival time as a list
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2))

Specify effect size based on median survival times
getSampleSizeSurvival(median1 = 5, median2 = 3)

Specify effect size based on median survival times of Weibull distribtion with
kappa = 2
getSampleSizeSurvival(median1 = 5, median2 = 3, kappa = 2)

128 getSimulationEnrichmentMeans

Identify minimal and maximal required subjects to
reach the required events in spite of dropouts
getSampleSizeSurvival(accrualTime = c(0, 18), accrualIntensity = c(20, 30),

lambda2 = 0.4, lambda1 = 0.3, followUpTime = Inf, dropoutRate1 = 0.001,
dropoutRate2 = 0.005)

getSampleSizeSurvival(accrualTime = c(0, 18), accrualIntensity = c(20, 30),
lambda2 = 0.4, lambda1 = 0.3, followUpTime = 0, dropoutRate1 = 0.001,
dropoutRate2 = 0.005)

End(Not run)

getSimulationEnrichmentMeans

Get Simulation Enrichment Means

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size or testing means in an enrichment design testing situation.

Usage

getSimulationEnrichmentMeans(
design = NULL,
...,
effectList = NULL,
intersectionTest = c("Simes", "SpiessensDebois", "Bonferroni", "Sidak"),
stratifiedAnalysis = TRUE,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_integer_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
stDevH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
selectPopulationsFunction = NULL,
showStatistics = FALSE

)

getSimulationEnrichmentMeans 129

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

effectList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois",
"Bonferroni", "Simes", and "Sidak", default is "Simes".

stratifiedAnalysis

Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects

130 getSimulationEnrichmentMeans

for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs minNumberOfSubjectsPerStage refers
to the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev. Must be a positive numeric of length 1.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

selectPopulationsFunction

Optionally, a function can be entered that defines the way of how populations

getSimulationEnrichmentMeans 131

are selected. This function is allowed to depend on effectVector with length
populations and stage (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities, and
expected sample size at given number of subjects, parameter configuration, and population selection
rule in the enrichment situation. An allocation ratio can be specified referring to the ratio of number
of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 and/or stDevH1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedPopulations,
plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage,
conditionalPower, conditionalCriticalValue, overallEffects, and stDevH1. The function
has to contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Assess a population selection strategy with one subset population.
If the subset is better than the full population, then the subset
is selected for the second stage, otherwise the full. Print and plot
design characteristics.

Define design
designIN <- getDesignInverseNormal(kMax = 2)

132 getSimulationEnrichmentMeans

Define subgroups and their prevalences
subGroups <- c("S", "R") # fixed names!
prevalences <- c(0.2, 0.8)

Define effect matrix and variability
effectR <- 0.2
m <- c()
for (effectS in seq(0, 0.5, 0.25)) {

m <- c(m, effectS, effectR)
}
effects <- matrix(m, byrow = TRUE, ncol = 2)
stDev <- c(0.4, 0.8)

Define effect list
effectList <- list(subGroups=subGroups, prevalences=prevalences, stDevs = stDev, effects = effects)

Perform simulation
simResultsPE <- getSimulationEnrichmentMeans(design = designIN,

effectList = effectList, plannedSubjects = c(50, 100),
maxNumberOfIterations = 100)

print(simResultsPE)

Assess the design characteristics of a user defined selection
strategy in a three-stage design with no interim efficacy stop
using the inverse normal method for combining the stages.
Only the second interim is used for a selecting of a study
population. There is a small probability for stopping the trial
at the first interim.

Define design
designIN2 <- getDesignInverseNormal(typeOfDesign = "noEarlyEfficacy", kMax = 3)

Define selection function
mySelection <- function(effectVector, stage) {

selectedPopulations <- rep(TRUE, 3)
if (stage == 2) {

selectedPopulations <- (effectVector >= c(1, 2, 3))
}
return(selectedPopulations)

}

Define subgroups and their prevalences
subGroups <- c("S1", "S12", "S2", "R") # fixed names!
prevalences <- c(0.2, 0.3, 0.4, 0.1)

effectR <- 1.5
effectS12 = 5
m <- c()
for (effectS1 in seq(0, 5, 1)) {

for (effectS2 in seq(0, 5, 1)) {
m <- c(m, effectS1, effectS12, effectS2, effectR)

}
}
effects <- matrix(m, byrow = TRUE, ncol = 4)
stDev <- 10

Define effect list

getSimulationEnrichmentRates 133

effectList <- list(subGroups=subGroups, prevalences=prevalences, stDevs = stDev, effects = effects)

Perform simulation
simResultsPE <- getSimulationEnrichmentMeans(

design = designIN2,
effectList = effectList,
typeOfSelection = "userDefined",
selectPopulationsFunction = mySelection,
intersectionTest = "Simes",
plannedSubjects = c(50, 100, 150),
maxNumberOfIterations = 100)

print(simResultsPE)
if (require(ggplot2)) plot(simResultsPE, type = 3)

End(Not run)

getSimulationEnrichmentRates

Get Simulation Enrichment Rates

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing rates in an enrichment design testing situation.

Usage

getSimulationEnrichmentRates(
design = NULL,
...,
effectList = NULL,
intersectionTest = c("Simes", "SpiessensDebois", "Bonferroni", "Sidak"),
stratifiedAnalysis = TRUE,
directionUpper = TRUE,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
piTreatmentH1 = NA_real_,
piControlH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,

134 getSimulationEnrichmentRates

selectPopulationsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

effectList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois",
"Bonferroni", "Simes", and "Sidak", default is "Simes".

stratifiedAnalysis

Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

getSimulationEnrichmentRates 135

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs minNumberOfSubjectsPerStage refers
to the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

piTreatmentH1 If specified, the assumed probabilities in the active arm under which the sample
size recalculation was performed and the conditional power was calculated.

piControlH1 If specified, the assumed probabilities in the control arm under which the sample
size recalculation was performed and the conditional power was calculated.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with

136 getSimulationEnrichmentRates

conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

selectPopulationsFunction

Optionally, a function can be entered that defines the way of how populations
are selected. This function is allowed to depend on effectVector with length
populations and stage (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the enrichment situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of piTreatmentH1 and/or piControlH1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedPopulations,
directionUpper, plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue, overallRatesTreatment,
overallRatesControl, piTreatmentH1, and piControlH1. The function has to contain the three-
dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Assess a population selection strategy with two subset populations and
a binary endpoint using a stratified analysis. No early efficacy stop,

getSimulationEnrichmentSurvival 137

weighted inverse normal method with weight sqrt(0.4).
pi2 <- c(0.3, 0.4, 0.3, 0.55)
pi1Seq <- seq(0.0, 0.2, 0.2)
pi1 <- matrix(rep(pi1Seq, length(pi2)), ncol = length(pi1Seq), byrow = TRUE) + pi2
effectList <- list(

subGroups = c("S1", "S2", "S12", "R"),
prevalences = c(0.1, 0.4, 0.2, 0.3),
piControl = pi2,
piTreatments = expand.grid(pi1[1,], pi1[2,], pi1[3,], pi1[4,])

)
design <- getDesignInverseNormal(informationRates = c(0.4, 1),

typeOfDesign = "noEarlyEfficacy")
simResultsPE <- getSimulationEnrichmentRates(design,

plannedSubjects = c(150, 300),
allocationRatioPlanned = 1.5, directionUpper = TRUE,
effectList = effectList, stratifiedAnalysis = TRUE,
intersectionTest = "Sidak",
typeOfSelection = "epsilon", epsilonValue = 0.025,
maxNumberOfIterations = 100)

print(simResultsPE)

End(Not run)

getSimulationEnrichmentSurvival

Get Simulation Enrichment Survival

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing hazard ratios in an enrichment design testing situation. In contrast to
getSimulationSurvival() (where survival times are simulated), normally distributed logrank test
statistics are simulated.

Usage

getSimulationEnrichmentSurvival(
design = NULL,
...,
effectList = NULL,
intersectionTest = c("Simes", "SpiessensDebois", "Bonferroni", "Sidak"),
stratifiedAnalysis = TRUE,
directionUpper = TRUE,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedEvents = NA_real_,
allocationRatioPlanned = NA_real_,

138 getSimulationEnrichmentSurvival

minNumberOfEventsPerStage = NA_real_,
maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcEventsFunction = NULL,
selectPopulationsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

effectList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois",
"Bonferroni", "Simes", and "Sidak", default is "Simes".

stratifiedAnalysis

Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected

getSimulationEnrichmentSurvival 139

treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

minNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

maxNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.

140 getSimulationEnrichmentSurvival

calcEventsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, event number recalculation is performed with
conditional power and specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

selectPopulationsFunction

Optionally, a function can be entered that defines the way of how populations
are selected. This function is allowed to depend on effectVector with length
populations and stage (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected event number at given number of events, parameter configuration, and population
selection rule in the enrichment situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment group as compared to the control group.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage (or calcEventsFunction) are defined.

calcEventsFunction
This function returns the number of events at given conditional power and conditional critical value
for specified testing situation. The function might depend on the variables stage, selectedPopulations,
plannedEvents, directionUpper, allocationRatioPlanned, minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
conditionalPower, conditionalCriticalValue, and overallEffects. The function has to
contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

getSimulationMeans 141

Examples

Not run:
Assess a population selection strategy with one subset population and
a survival endpoint. The considered situations are defined through the
event rates yielding a range of hazard ratios in the subsets. Design
with O'Brien and Fleming alpha spending and a reassessment of event
number in the first interim based on conditional power and assumed
hazard ratio using weighted inverse normal combination test.

subGroups <- c("S", "R")
prevalences <- c(0.40, 0.60)

p2 <- c(0.3, 0.4)
range1 <- p2[1] + seq(0, 0.3, 0.05)

p1 <- c()
for (x1 in range1) {

p1 <- c(p1, x1, p2[2] + 0.1)
}
hazardRatios <- log(matrix(1 - p1, byrow = TRUE, ncol = 2)) /

matrix(log(1 - p2), byrow = TRUE, ncol = 2,
nrow = length(range1))

effectList <- list(subGroups=subGroups, prevalences=prevalences,
hazardRatios = hazardRatios)

design <- getDesignInverseNormal(informationRates = c(0.3, 0.7, 1),
typeOfDesign = "asOF")

simResultsPE <- getSimulationEnrichmentSurvival(design,
plannedEvents = c(40, 90, 120),
effectList = effectList,
typeOfSelection = "rbest", rValue = 2,
conditionalPower = 0.8, minNumberOfEventsPerStage = c(NA, 50, 30),
maxNumberOfEventsPerStage = c(NA, 150, 30), thetaH1 = 4 / 3,
maxNumberOfIterations = 100)

print(simResultsPE)

End(Not run)

getSimulationMeans Get Simulation Means

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing means in a one or two treatment groups testing situation.

Usage

getSimulationMeans(
design = NULL,
...,

142 getSimulationMeans

groups = 2L,
normalApproximation = TRUE,
meanRatio = FALSE,
thetaH0 = ifelse(meanRatio, 1, 0),
alternative = seq(0, 1, 0.2),
stDev = 1,
plannedSubjects = NA_real_,
directionUpper = TRUE,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
stDevH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. Default is TRUE, i.e., normally dis-
tributed test statistics are generated. If FALSE, the t test is used for calculating
the p-values, i.e., t distributed test statistics are generated.

meanRatio If TRUE, the design characteristics for one-sided testing of H0: mu1 / mu2 =
thetaH0 are simulated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

getSimulationMeans 143

alternative The alternative hypothesis value for testing means under which the data is sim-
ulated. This can be a vector of assumed alternatives, default is seq(0, 1, 0.2).

stDev The standard deviation under which the data is simulated, default is 1. If meanRatio
= TRUE is specified, stDev defines the coefficient of variation sigma / mu2. Must
be a positive numeric of length 1.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs minNumberOfSubjectsPerStage refers
to the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev. Must be a positive numeric of length 1.

144 getSimulationMeans

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of subjects and parameter configuration. Additionally, an
allocation ratio = n1/n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfSubjectsPerStage,
and maxNumberOfSubjectsPerStage (or calcSubjectsFunction) are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on variables stage, meanRatio,
thetaH0, groups, plannedSubjects, sampleSizesPerStage, directionUpper, allocationRatioPlanned,
minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue,
thetaH1, and stDevH1. The function has to contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median range; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

Example 1:
simulationResults <- getSimulationMeans(plannedSubjects = 40)

getSimulationMeans 145

simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <- getSimulationMeans(plannedSubjects = 40)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData() can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. alternative: The alternative hypothesis value.

4. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

5. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

6. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

7. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher’s combination test).

8. testStatisticsPerStage: The test statistic for each stage if only data from the considered
stage is taken into account.

9. effectEstimate: Overall simulated standardized effect estimate.

10. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

11. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Fixed sample size design with two groups, total sample size 40,
alternative = c(0, 0.2, 0.4, 0.8, 1), and standard deviation = 1 (the default)
getSimulationMeans(plannedSubjects = 40, maxNumberOfIterations = 10)
Not run:
Increase number of simulation iterations and compare results
with power calculator using normal approximation
getSimulationMeans(alternative = 0:4, stDev = 5,

plannedSubjects = 40, maxNumberOfIterations = 1000)
getPowerMeans(alternative = 0:4, stDev = 5,

maxNumberOfSubjects = 40, normalApproximation = TRUE)

Do the same for a three-stage O'Brien&Fleming inverse
normal group sequential design with non-binding futility stops

146 getSimulationMultiArmMeans

designIN <- getDesignInverseNormal(typeOfDesign = "OF", futilityBounds = c(0, 0))
x <- getSimulationMeans(designIN, alternative = c(0:4), stDev = 5,

plannedSubjects = c(20, 40, 60), maxNumberOfIterations = 1000)
getPowerMeans(designIN, alternative = 0:4, stDev = 5,

maxNumberOfSubjects = 60, normalApproximation = TRUE)

Assess power and average sample size if a sample size increase is foreseen
at conditional power 80% for each subsequent stage based on observed overall
effect and specified minNumberOfSubjectsPerStage and
maxNumberOfSubjectsPerStage
getSimulationMeans(designIN, alternative = 0:4, stDev = 5,

plannedSubjects = c(20, 40, 60),
minNumberOfSubjectsPerStage = c(NA, 20, 20),
maxNumberOfSubjectsPerStage = c(NA, 80, 80),
conditionalPower = 0.8,
maxNumberOfIterations = 50)

Do the same under the assumption that a sample size increase only takes
place at the first interim. The sample size for the third stage is set equal
to the second stage sample size.
mySampleSizeCalculationFunction <- function(..., stage,

minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage,
sampleSizesPerStage,
conditionalPower,
conditionalCriticalValue,
allocationRatioPlanned,
thetaH1,
stDevH1) {
if (stage <= 2) {
stageSubjects <- (1 + allocationRatioPlanned)^2/allocationRatioPlanned *
(max(0, conditionalCriticalValue + stats::qnorm(conditionalPower)))^2 /

(max(1e-12, thetaH1/stDevH1))^2
stageSubjects <- min(max(minNumberOfSubjectsPerStage[stage],

stageSubjects), maxNumberOfSubjectsPerStage[stage])
} else {
stageSubjects <- sampleSizesPerStage[stage - 1]
}
return(stageSubjects)

}
getSimulationMeans(designIN, alternative = 0:4, stDev = 5,

plannedSubjects = c(20, 40, 60),
minNumberOfSubjectsPerStage = c(NA, 20, 20),
maxNumberOfSubjectsPerStage = c(NA, 80, 80),
conditionalPower = 0.8,
calcSubjectsFunction = mySampleSizeCalculationFunction,
maxNumberOfIterations = 50)

End(Not run)

getSimulationMultiArmMeans

Get Simulation Multi-Arm Means

getSimulationMultiArmMeans 147

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing means in a multi-arm treatment groups testing situation.

Usage

getSimulationMultiArmMeans(
design = NULL,
...,
activeArms = 3L,
effectMatrix = NULL,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
muMaxVector = seq(0, 1, 0.2),
gED50 = NA_real_,
slope = 1,
intersectionTest = c("Dunnett", "Bonferroni", "Simes", "Sidak", "Hierarchical"),
stDev = 1,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_integer_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
stDevH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

activeArms The number of active treatment arms to be compared with control, default is 3.

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined", default is "linear".

148 getSimulationMultiArmMeans

For "linear", "muMaxVector" specifies the range of effect sizes for the treat-
ment group with highest response. If "sigmoidEmax" is selected, "gED50" and
"slope" has to be entered to specify the ED50 and the slope of the sigmoid
Emax model. For "sigmoidEmax", "muMaxVector" specifies the range of ef-
fect sizes for the treatment group with response according to infinite dose. If
"userDefined" is selected, "effectMatrix" has to be entered.

muMaxVector Range of effect sizes for the treatment group with highest response for "linear"
and "sigmoidEmax" model, default is seq(0, 1, 0.2).

gED50 If typeOfShape = "sigmoidEmax" is selected, "gED50" has to be entered to
specify the ED50 of the sigmoid Emax model.

slope If typeOfShape = "sigmoidEmax" is selected, "slope" can be entered to spec-
ify the slope of the sigmoid Emax model, default is 1.

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett",
"Bonferroni", "Simes", "Sidak", and "Hierarchical", default is "Dunnett".

stDev The standard deviation under which the data is simulated, default is 1. If meanRatio
= TRUE is specified, stDev defines the coefficient of variation sigma / mu2. Must
be a positive numeric of length 1.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the

getSimulationMultiArmMeans 149

interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs minNumberOfSubjectsPerStage refers
to the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev. Must be a positive numeric of length 1.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.

calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

150 getSimulationMultiArmMeans

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment arms
are selected. This function is allowed to depend on effectVector with length
activeArms and stage (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 and/or stDevH1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedArms,
plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage,
conditionalPower, conditionalCriticalValue, overallEffects, and stDevH1. The function
has to contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Assess a treatment-arm selection strategy with three active arms,
if the better of the arms is selected for the second stage, and
compare it with the no-selection case.
Assume a linear dose-response relationship
maxNumberOfIterations <- 100
designIN <- getDesignInverseNormal(typeOfDesign = "OF", kMax = 2)

getSimulationMultiArmMeans 151

sim <- getSimulationMultiArmMeans(design = designIN,
activeArms = 3, typeOfShape = "linear",
muMaxVector = seq(0,0.8,0.2),
intersectionTest = "Simes",
typeOfSelection = "best",
plannedSubjects = c(30,60),
maxNumberOfIterations = maxNumberOfIterations)

sim0 <- getSimulationMultiArmMeans(design = designIN,
activeArms = 3, typeOfShape = "linear",
muMaxVector = seq(0,0.8,0.2),
intersectionTest = "Simes",
typeOfSelection = "all",
plannedSubjects = c(30,60),
maxNumberOfIterations = maxNumberOfIterations)

sim$rejectAtLeastOne
sim$expectedNumberOfSubjects

sim0$rejectAtLeastOne
sim0$expectedNumberOfSubjects

Compare the power of the conditional Dunnett test with the power of the
combination test using Dunnett's intersection tests if no treatment arm
selection takes place. Asseume a linear dose-response relationship.
maxNumberOfIterations <- 100
designIN <- getDesignInverseNormal(typeOfDesign = "asUser",

userAlphaSpending = c(0, 0.025))
designCD <- getDesignConditionalDunnett(secondStageConditioning = TRUE)

index <- 1
for (design in c(designIN, designCD)) {

results <- getSimulationMultiArmMeans(design, activeArms = 3,
muMaxVector = seq(0, 1, 0.2), typeOfShape = "linear",
plannedSubjects = cumsum(rep(20, 2)),
intersectionTest = "Dunnett",
typeOfSelection = "all", maxNumberOfIterations = maxNumberOfIterations)

if (index == 1) {
drift <- results$effectMatrix[nrow(results$effectMatrix),]
plot(drift, results$rejectAtLeastOne, type = "l", lty = 1,

lwd = 3, col = "black", ylab = "Power")
} else {

lines(drift,results$rejectAtLeastOne, type = "l",
lty = index, lwd = 3, col = "red")

}
index <- index + 1

}
legend("topleft", legend=c("Combination Dunnett", "Conditional Dunnett"),

col=c("black", "red"), lty = (1:2), cex = 0.8)

Assess the design characteristics of a user defined selection
strategy in a two-stage design using the inverse normal method
with constant bounds. Stopping for futility due to
de-selection of all treatment arms.
designIN <- getDesignInverseNormal(typeOfDesign = "P", kMax = 2)

mySelection <- function(effectVector) {

152 getSimulationMultiArmRates

selectedArms <- (effectVector >= c(0, 0.1, 0.3))
return(selectedArms)

}

results <- getSimulationMultiArmMeans(designIN, activeArms = 3,
muMaxVector = seq(0, 1, 0.2),
typeOfShape = "linear",
plannedSubjects = c(30,60),
intersectionTest = "Dunnett",
typeOfSelection = "userDefined",
selectArmsFunction = mySelection,
maxNumberOfIterations = 100)

options(rpact.summary.output.size = "medium")
summary(results)
if (require(ggplot2)) plot(results, type = c(5,3,9), grid = 4)

End(Not run)

getSimulationMultiArmRates

Get Simulation Multi-Arm Rates

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing rates in a multi-arm treatment groups testing situation.

Usage

getSimulationMultiArmRates(
design = NULL,
...,
activeArms = 3L,
effectMatrix = NULL,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
piMaxVector = seq(0.2, 0.5, 0.1),
piControl = 0.2,
gED50 = NA_real_,
slope = 1,
intersectionTest = c("Dunnett", "Bonferroni", "Simes", "Sidak", "Hierarchical"),
directionUpper = TRUE,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,

getSimulationMultiArmRates 153

maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
piTreatmentsH1 = NA_real_,
piControlH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

activeArms The number of active treatment arms to be compared with control, default is 3.

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined", default is "linear".
For "linear", "muMaxVector" specifies the range of effect sizes for the treat-
ment group with highest response. If "sigmoidEmax" is selected, "gED50" and
"slope" has to be entered to specify the ED50 and the slope of the sigmoid
Emax model. For "sigmoidEmax", "muMaxVector" specifies the range of ef-
fect sizes for the treatment group with response according to infinite dose. If
"userDefined" is selected, "effectMatrix" has to be entered.

piMaxVector Range of assumed probabilities for the treatment group with highest response
for "linear" and "sigmoidEmax" model, default is seq(0, 1, 0.2).

piControl If specified, the assumed probability in the control arm for simulation and under
which the sample size recalculation is performed.

gED50 If typeOfShape = "sigmoidEmax" is selected, "gED50" has to be entered to
specify the ED50 of the sigmoid Emax model.

slope If typeOfShape = "sigmoidEmax" is selected, "slope" can be entered to spec-
ify the slope of the sigmoid Emax model, default is 1.

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett",
"Bonferroni", "Simes", "Sidak", and "Hierarchical", default is "Dunnett".

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".

154 getSimulationMultiArmRates

For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs minNumberOfSubjectsPerStage refers
to the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

getSimulationMultiArmRates 155

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

piTreatmentsH1 If specified, the assumed probability in the active treatment arm(s) under which
the sample size recalculation is performed.

piControlH1 If specified, the assumed probability in the reference group (if different from
piControl) for which the conditional power was calculated.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment arms
are selected. This function is allowed to depend on effectVector with length
activeArms and stage (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of piTreatmentsH1 and/or piControlH1 makes only sense if kMax > 1 and if
conditionalPower, minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or
calcSubjectsFunction) are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedArms,
directionUpper, plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue, overallRates,
overallRatesControl, piTreatmentsH1, and piControlH1. The function has to contain the
three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

156 getSimulationMultiArmSurvival

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Simulate the power of the combination test with two interim stages and
O'Brien & Fleming boundaries using Dunnett's intersection tests if the
best treatment arm is selected at first interim. Selection only take
place if a non-negative treatment effect is observed (threshold = 0);
20 subjects per stage and treatment arm, simulation is performed for
four parameter configurations.
design <- getDesignInverseNormal(typeOfDesign = "OF")
effectMatrix <- matrix(c(0.2,0.2,0.2,

0.4,0.4,0.4,
0.4,0.5,0.5,
0.4,0.5,0.6),
byrow = TRUE, nrow = 4, ncol = 3)

x <- getSimulationMultiArmRates(design = design, typeOfShape = "userDefined",
effectMatrix = effectMatrix , piControl = 0.2,
typeOfSelection = "best", threshold = 0, intersectionTest = "Dunnett",
plannedSubjects = c(20, 40, 60),
maxNumberOfIterations = 50)

summary(x)

End(Not run)

getSimulationMultiArmSurvival

Get Simulation Multi-Arm Survival

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing hazard ratios in a multi-arm treatment groups testing situation. In contrast
to getSimulationSurvival() (where survival times are simulated), normally distributed logrank
test statistics are simulated.

getSimulationMultiArmSurvival 157

Usage

getSimulationMultiArmSurvival(
design = NULL,
...,
activeArms = 3L,
effectMatrix = NULL,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
omegaMaxVector = seq(1, 2.6, 0.4),
gED50 = NA_real_,
slope = 1,
intersectionTest = c("Dunnett", "Bonferroni", "Simes", "Sidak", "Hierarchical"),
directionUpper = TRUE,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
correlationComputation = c("alternative", "null"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedEvents = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfEventsPerStage = NA_real_,
maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcEventsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

activeArms The number of active treatment arms to be compared with control, default is 3.

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined", default is "linear".
For "linear", "muMaxVector" specifies the range of effect sizes for the treat-
ment group with highest response. If "sigmoidEmax" is selected, "gED50" and
"slope" has to be entered to specify the ED50 and the slope of the sigmoid
Emax model. For "sigmoidEmax", "muMaxVector" specifies the range of ef-
fect sizes for the treatment group with response according to infinite dose. If
"userDefined" is selected, "effectMatrix" has to be entered.

158 getSimulationMultiArmSurvival

omegaMaxVector Range of hazard ratios with highest response for "linear" and "sigmoidEmax"
model, default is seq(1, 2.6, 0.4).

gED50 If typeOfShape = "sigmoidEmax" is selected, "gED50" has to be entered to
specify the ED50 of the sigmoid Emax model.

slope If typeOfShape = "sigmoidEmax" is selected, "slope" can be entered to spec-
ify the slope of the sigmoid Emax model, default is 1.

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett",
"Bonferroni", "Simes", "Sidak", and "Hierarchical", default is "Dunnett".

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

correlationComputation

If correlationComputation = "alternative", for simulating log-rank statis-
tics in the many-to-one design, a correlation matrix according to Deng et al.
(Biometrics, 2019) accounting for the respective alternative is used; if correlationComputation
= "null", a constant correlation matrix valid under the null, i.e., not accounting
for the alternative is used, default is "alternative".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-

getSimulationMultiArmSurvival 159

signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

minNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

maxNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.

calcEventsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, event number recalculation is performed with
conditional power and specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment arms
are selected. This function is allowed to depend on effectVector with length
activeArms and stage (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

160 getSimulationMultiArmSurvival

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage (or calcEventsFunction) are defined.

calcEventsFunction
This function returns the number of events at given conditional power and conditional critical value
for specified testing situation. The function might depend on the variables stage, selectedArms,
plannedEvents, directionUpper, allocationRatioPlanned, minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
conditionalPower, conditionalCriticalValue, and overallEffects. The function has to
contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Assess different selection rules for a two-stage survival design with
O'Brien & Fleming alpha spending boundaries and (non-binding) stopping
for futility if the test statistic is negative.
Number of events at the second stage is adjusted based on conditional
power 80% and specified minimum and maximum number of Events.
design <- getDesignInverseNormal(typeOfDesign = "asOF", futilityBounds = 0)

y1 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes", typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1, 2, 0.5), gED50 = 2, slope = 4,
typeOfSelection = "best", conditionalPower = 0.8,
minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = 50,
plannedEvents = c(75, 120))

getSimulationRates 161

y2 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes", typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1,2,0.5), gED50 = 2, slope = 4,
typeOfSelection = "epsilon", epsilonValue = 0.2,
effectMeasure = "effectEstimate",
conditionalPower = 0.8, minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = 50,
plannedEvents = c(75, 120))

y1$effectMatrix

y1$rejectAtLeastOne
y2$rejectAtLeastOne

y1$selectedArms
y2$selectedArms

End(Not run)

getSimulationRates Get Simulation Rates

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing rates in a one or two treatment groups testing situation.

Usage

getSimulationRates(
design = NULL,
...,
groups = 2L,
normalApproximation = TRUE,
riskRatio = FALSE,
thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = seq(0.2, 0.5, 0.1),
pi2 = NA_real_,
plannedSubjects = NA_real_,
directionUpper = TRUE,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
pi1H1 = NA_real_,
pi2H1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
showStatistics = FALSE

)

162 getSimulationRates

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. Default is FALSE for testing means (i.e.,
the t test is used) and TRUE for testing rates and the hazard ratio. For testing rates,
if normalApproximation = FALSE is specified, the binomial test (one sample)
or the exact test of Fisher (two samples) is used for calculating the p-values. In
the survival setting normalApproximation = FALSE has no effect.

riskRatio If TRUE, the design characteristics for one-sided testing of H0: pi1 / pi2 =
thetaH0 are simulated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

pi1 A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(0.2, 0.5, 0.1)
(power calculations and simulations) or seq(0.4, 0.6, 0.1) (sample size cal-
culations).

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

getSimulationRates 163

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs minNumberOfSubjectsPerStage refers
to the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

pi1H1 If specified, the assumed probability in the active treatment group if two treat-
ment groups are considered, or the assumed probability for a one treatment
group design, for which the conditional power was calculated.

pi2H1 If specified, the assumed probability in the reference group if two treatment
groups are considered, for which the conditional power was calculated.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of subjects and parameter configuration. Additionally, an

164 getSimulationRates

allocation ratio = n1/n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

The definition of pi1H1 and/or pi2H1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on variables stage, riskRatio,
thetaH0, groups, plannedSubjects, sampleSizesPerStage, directionUpper, allocationRatioPlanned,
minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue,
overallRate, farringtonManningValue1, and farringtonManningValue2. The function has to
contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median range; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

Example 1:
simulationResults <- getSimulationRates(plannedSubjects = 40)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <- getSimulationRates(plannedSubjects = 40)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData() can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. pi1: The assumed or derived event rate in the treatment group (if available).

4. pi2: The assumed or derived event rate in the control group (if available).

getSimulationRates 165

5. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

6. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

7. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

8. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher combination test)’

9. testStatisticsPerStage: The test statistic for each stage if only data from the considered
stage is taken into account.

10. overallRate1: The cumulative rate in treatment group 1.

11. overallRate2: The cumulative rate in treatment group 2.

12. stagewiseRates1: The stage-wise rate in treatment group 1.

13. stagewiseRates2: The stage-wise rate in treatment group 2.

14. sampleSizesPerStage1: The stage-wise sample size in treatment group 1.

15. sampleSizesPerStage2: The stage-wise sample size in treatment group 2.

16. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

17. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with pi1H1 and pi2H1.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Fixed sample size design (two groups) with total sample
size 120, pi1 = (0.3,0.4,0.5,0.6) and pi2 = 0.3
getSimulationRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = 120, maxNumberOfIterations = 10)
Not run:
Increase number of simulation iterations and compare results with power calculator
getSimulationRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = 120, maxNumberOfIterations = 50)
getPowerRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, maxNumberOfSubjects = 120)

Do the same for a two-stage Pocock inverse normal group sequential
design with non-binding futility stops
designIN <- getDesignInverseNormal(typeOfDesign = "P", futilityBounds = c(0))
getSimulationRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = c(40, 80), maxNumberOfIterations = 50)
getPowerRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, maxNumberOfSubjects = 80)

Assess power and average sample size if a sample size reassessment is
foreseen at conditional power 80% for the subsequent stage (decrease and increase)
based on observed overall (cumulative) rates and specified minNumberOfSubjectsPerStage
and maxNumberOfSubjectsPerStage

166 getSimulationSurvival

Do the same under the assumption that a sample size increase only takes place
if the rate difference exceeds the value 0.1 at interim. For this, the sample
size recalculation method needs to be redefined:
mySampleSizeCalculationFunction <- function(..., stage,

plannedSubjects,
minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage,
conditionalPower,
conditionalCriticalValue,
overallRate) {

if (overallRate[1] - overallRate[2] < 0.1) {
return(plannedSubjects[stage] - plannedSubjects[stage - 1])

} else {
rateUnderH0 <- (overallRate[1] + overallRate[2]) / 2
stageSubjects <- 2 * (max(0, conditionalCriticalValue *

sqrt(2 * rateUnderH0 * (1 - rateUnderH0)) +
stats::qnorm(conditionalPower) * sqrt(overallRate[1] *
(1 - overallRate[1]) + overallRate[2] * (1 - overallRate[2]))))^2 /
(max(1e-12, (overallRate[1] - overallRate[2])))^2

stageSubjects <- ceiling(min(max(
minNumberOfSubjectsPerStage[stage],
stageSubjects), maxNumberOfSubjectsPerStage[stage]))

return(stageSubjects)
}

}
getSimulationRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = c(40, 80), minNumberOfSubjectsPerStage = c(40, 20),
maxNumberOfSubjectsPerStage = c(40, 160), conditionalPower = 0.8,
calcSubjectsFunction = mySampleSizeCalculationFunction, maxNumberOfIterations = 50)

End(Not run)

getSimulationSurvival Get Simulation Survival

Description

Returns the analysis times, power, stopping probabilities, conditional power, and expected sample
size for testing the hazard ratio in a two treatment groups survival design.

Usage

getSimulationSurvival(
design = NULL,
...,
thetaH0 = 1,
directionUpper = TRUE,
pi1 = NA_real_,
pi2 = NA_real_,
lambda1 = NA_real_,
lambda2 = NA_real_,
median1 = NA_real_,

getSimulationSurvival 167

median2 = NA_real_,
hazardRatio = NA_real_,
kappa = 1,
piecewiseSurvivalTime = NA_real_,
allocation1 = 1,
allocation2 = 1,
eventTime = 12,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12,
maxNumberOfSubjects = NA_real_,
plannedEvents = NA_real_,
minNumberOfEventsPerStage = NA_real_,
maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,
maxNumberOfRawDatasetsPerStage = 0,
longTimeSimulationAllowed = FALSE,
seed = NA_real_,
calcEventsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

168 getSimulationSurvival

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

median1 The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

allocation1 The number how many subjects are assigned to treatment 1 in a subsequent
order, default is 1

allocation2 The number how many subjects are assigned to treatment 2 in a subsequent
order, default is 1

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

getSimulationSurvival 169

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. If accrual time and accrual
intensity are specified, this will be calculated. Must be a positive integer of
length 1.

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

minNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

maxNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

maxNumberOfRawDatasetsPerStage

The number of raw datasets per stage that shall be extracted and saved as data.frame,
default is 0. getRawData() can be used to get the extracted raw data from the
object.

longTimeSimulationAllowed

Logical that indicates whether long time simulations that consumes more than
30 seconds are allowed or not, default is FALSE.

seed The seed to reproduce the simulation, default is a random seed.
calcEventsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, event number recalculation is performed with

170 getSimulationSurvival

conditional power and specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of events, number of subjects, and parameter configura-
tion. It also simulates the time when the required events are expected under the given assump-
tions (exponentially, piecewise exponentially, or Weibull distributed survival times and constant
or non-constant piecewise accrual). Additionally, integers allocation1 and allocation2 can be
specified that determine the number allocated to treatment group 1 and treatment group 2, respec-
tively. More precisely, unequal randomization ratios must be specified via the two integer arguments
allocation1 and allocation2 which describe how many subjects are consecutively enrolled in
each group, respectively, before a subject is assigned to the other group. For example, the arguments
allocation1 = 2, allocation2 = 1, maxNumberOfSubjects = 300 specify 2:1 randomization with
200 subjects randomized to intervention and 100 to control. (Caveat: Do not use allocation1 =
200, allocation2 = 100, maxNumberOfSubjects = 300 as this would imply that the 200 interven-
tion subjects are enrolled prior to enrollment of any control subjects.)

conditionalPower
The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage are defined.

Note that numberOfSubjects, numberOfSubjects1, and numberOfSubjects2 in the output are the
expected number of subjects.

calcEventsFunction
This function returns the number of events at given conditional power and conditional critical value
for specified testing situation. The function might depend on variables stage, conditionalPower,
thetaH0, plannedEvents, eventsPerStage, minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
allocationRatioPlanned, conditionalCriticalValue, The function has to contain the three-
dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

getSimulationSurvival 171

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.
accrualIntensity itself is a value or a vector (depending on the length of accrualTime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the relative inten-
sity how subjects enter the trial. For example, accrualIntensity = c(0.1, 0.2) specifies that in
the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = 0.1 meaning that the absolute accrual intensity will
be calculated.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median range; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

Example 1:
simulationResults <- getSimulationSurvival(maxNumberOfSubjects = 100, plannedEvents
= 30)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <- getSimulationSurvival(maxNumberOfSubjects = 100, plannedEvents
= 30)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData() can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. pi1: The assumed or derived event rate in the treatment group.

4. pi2: The assumed or derived event rate in the control group.

5. hazardRatio: The hazard ratio under consideration (if available).

172 getSimulationSurvival

6. analysisTime: The analysis time.

7. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

8. eventsPerStage1: The observed number of events per stage in treatment group 1.

9. eventsPerStage2: The observed number of events per stage in treatment group 2.

10. eventsPerStage: The observed number of events per stage in both treatment groups.

11. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

12. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

13. eventsNotAchieved: 1 if number of events could not be reached with observed number of
subjects, 0 otherwise.

14. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher combination test)’

15. logRankStatistic: Z-score statistic which corresponds to a one-sided log-rank test at con-
sidered stage.

16. hazardRatioEstimateLR: The estimated hazard ratio, derived from the log-rank statistic.

17. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

18. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1.

Raw Data

getRawData() can be used to get the simulated raw data from the object as data.frame. Note that
getSimulationSurvival() must called before with maxNumberOfRawDatasetsPerStage > 0.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Fixed sample size with minimum required definitions, pi1 = (0.3,0.4,0.5,0.6) and
pi2 = 0.3 at event time 12, and accrual time 24
getSimulationSurvival(

pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 10

)
Not run:
Increase number of simulation iterations
getSimulationSurvival(

pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)

getSimulationSurvival 173

Determine necessary accrual time with default settings if 200 subjects and
30 subjects per time unit can be recruited
getSimulationSurvival(

plannedEvents = 40, accrualTime = 0,
accrualIntensity = 30, maxNumberOfSubjects = 200, maxNumberOfIterations = 50

)

Determine necessary accrual time with default settings if 200 subjects and
if the first 6 time units 20 subjects per time unit can be recruited,
then 30 subjects per time unit
getSimulationSurvival(

plannedEvents = 40, accrualTime = c(0, 6),
accrualIntensity = c(20, 30), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)

Determine maximum number of Subjects with default settings if the first
6 time units 20 subjects per time unit can be recruited, and after
10 time units 30 subjects per time unit
getSimulationSurvival(

plannedEvents = 40, accrualTime = c(0, 6, 10),
accrualIntensity = c(20, 30), maxNumberOfIterations = 50

)

Specify accrual time as a list
at <- list(

"0 - <6" = 20,
"6 - Inf" = 30

)
getSimulationSurvival(

plannedEvents = 40, accrualTime = at,
maxNumberOfSubjects = 200, maxNumberOfIterations = 50

)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30

)
getSimulationSurvival(plannedEvents = 40, accrualTime = at, maxNumberOfIterations = 50)

Specify effect size for a two-stage group sequential design with
O'Brien & Fleming boundaries. Effect size is based on event rates
at specified event time, directionUpper = FALSE needs to be specified
because it should be shown that hazard ratio < 1
designGS <- getDesignGroupSequential(kMax = 2)
getSimulationSurvival(

design = designGS,
pi1 = 0.2, pi2 = 0.3, eventTime = 24, plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, directionUpper = FALSE, maxNumberOfIterations = 50

)

As above, but with a three-stage O'Brien and Fleming design with
specified information rates, note that planned events consists of integer values
designGS2 <- getDesignGroupSequential(informationRates = c(0.4, 0.7, 1))
getSimulationSurvival(

design = designGS2,

174 getSimulationSurvival

pi1 = 0.2, pi2 = 0.3, eventTime = 24,
plannedEvents = round(designGS2$informationRates * 40),
maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50

)

Effect size is based on event rate at specified event time for the reference
group and hazard ratio, directionUpper = FALSE needs to be specified because
it should be shown that hazard ratio < 1
getSimulationSurvival(

design = designGS, hazardRatio = 0.5,
pi2 = 0.3, eventTime = 24, plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
directionUpper = FALSE, maxNumberOfIterations = 50

)

Effect size is based on hazard rate for the reference group and
hazard ratio, directionUpper = FALSE needs to be specified because
it should be shown that hazard ratio < 1
getSimulationSurvival(

design = designGS,
hazardRatio = 0.5, lambda2 = 0.02, plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50

)

Specification of piecewise exponential survival time and hazard ratios,
note that in getSimulationSurvival only on hazard ratio is used
in the case that the survival time is piecewise expoential
getSimulationSurvival(

design = designGS,
piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
hazardRatio = 1.5, plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)

pws <- list(
"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04

)
getSimulationSurvival(

design = designGS,
piecewiseSurvivalTime = pws, hazardRatio = c(1.5),
plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)

Specification of piecewise exponential survival time for both treatment arms
getSimulationSurvival(

design = designGS,
piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015, 0.03, 0.06), plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, maxNumberOfIterations = 50

)

Specification of piecewise exponential survival time as a list,
note that in getSimulationSurvival only on hazard ratio

getSimulationSurvival 175

(not a vector) can be used
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04

)
getSimulationSurvival(

design = designGS,
piecewiseSurvivalTime = pws, hazardRatio = 1.5,
plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)

Specification of piecewise exponential survival time and delayed effect
(response after 5 time units)
getSimulationSurvival(

design = designGS,
piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.01, 0.02, 0.06), plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, maxNumberOfIterations = 50

)

Specify effect size based on median survival times
getSimulationSurvival(

median1 = 5, median2 = 3, plannedEvents = 40,
maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50

)

Specify effect size based on median survival
times of Weibull distribtion with kappa = 2
getSimulationSurvival(

median1 = 5, median2 = 3, kappa = 2,
plannedEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE, maxNumberOfIterations = 50

)

Perform recalculation of number of events based on conditional power for a
three-stage design with inverse normal combination test, where the conditional power
is calculated under the specified effect size thetaH1 = 1.3 and up to a four-fold
increase in originally planned sample size (number of events) is allowed.
Note that the first value in minNumberOfEventsPerStage and
maxNumberOfEventsPerStage is arbitrary, i.e., it has no effect.
designIN <- getDesignInverseNormal(informationRates = c(0.4, 0.7, 1))

resultsWithSSR1 <- getSimulationSurvival(
design = designIN,
hazardRatio = seq(1, 1.6, 0.1),
pi2 = 0.3, conditionalPower = 0.8, thetaH1 = 1.3,
plannedEvents = c(58, 102, 146),
minNumberOfEventsPerStage = c(NA, 44, 44),
maxNumberOfEventsPerStage = 4 * c(NA, 44, 44),
maxNumberOfSubjects = 800, maxNumberOfIterations = 50

)
resultsWithSSR1

If thetaH1 is unspecified, the observed hazard ratio estimate

176 getSimulationSurvival

(calculated from the log-rank statistic) is used for performing the
recalculation of the number of events
resultsWithSSR2 <- getSimulationSurvival(

design = designIN,
hazardRatio = seq(1, 1.6, 0.1),
pi2 = 0.3, conditionalPower = 0.8, plannedEvents = c(58, 102, 146),
minNumberOfEventsPerStage = c(NA, 44, 44),
maxNumberOfEventsPerStage = 4 * c(NA, 44, 44),
maxNumberOfSubjects = 800, maxNumberOfIterations = 50

)
resultsWithSSR2

Compare it with design without event size recalculation
resultsWithoutSSR <- getSimulationSurvival(

design = designIN,
hazardRatio = seq(1, 1.6, 0.1), pi2 = 0.3,
plannedEvents = c(58, 102, 145), maxNumberOfSubjects = 800,
maxNumberOfIterations = 50

)
resultsWithoutSSR$overallReject
resultsWithSSR1$overallReject
resultsWithSSR2$overallReject

Confirm that event size racalcuation increases the Type I error rate,
i.e., you have to use the combination test
resultsWithSSRGS <- getSimulationSurvival(

design = designGS2,
hazardRatio = seq(1),
pi2 = 0.3, conditionalPower = 0.8, plannedEvents = c(58, 102, 145),
minNumberOfEventsPerStage = c(NA, 44, 44),
maxNumberOfEventsPerStage = 4 * c(NA, 44, 44),
maxNumberOfSubjects = 800, maxNumberOfIterations = 50

)
resultsWithSSRGS$overallReject

Set seed to get reproducable results
identical(

getSimulationSurvival(
plannedEvents = 40, maxNumberOfSubjects = 200,
seed = 99

)$analysisTime,
getSimulationSurvival(

plannedEvents = 40, maxNumberOfSubjects = 200,
seed = 99

)$analysisTime
)

Perform recalculation of number of events based on conditional power as above.
The number of events is recalculated only in the first interim, the recalculated number
is also used for the final stage. Here, we use the user defind calcEventsFunction as
follows (note that the last stage value in minNumberOfEventsPerStage and maxNumberOfEventsPerStage
has no effect):
myCalcEventsFunction <- function(...,

stage, conditionalPower, estimatedTheta,
plannedEvents, eventsOverStages,
minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
conditionalCriticalValue) {

getStageResults 177

theta <- max(1 + 1e-12, estimatedTheta)
if (stage == 2) {

requiredStageEvents <-
max(0, conditionalCriticalValue + qnorm(conditionalPower))^2 / log(theta)^2

requiredStageEvents <- min(
max(minNumberOfEventsPerStage[stage], requiredStageEvents),
maxNumberOfEventsPerStage[stage]

) + eventsOverStages[stage - 1]
} else {

requiredStageEvents <- 2 * eventsOverStages[stage - 1] - eventsOverStages[1]
}
return(requiredStageEvents)

}
resultsWithSSR <- getSimulationSurvival(

design = designIN,
hazardRatio = seq(1, 2.6, 0.5),
pi2 = 0.3,
conditionalPower = 0.8,
plannedEvents = c(58, 102, 146),
minNumberOfEventsPerStage = c(NA, 44, 4),
maxNumberOfEventsPerStage = 4 * c(NA, 44, 4),
maxNumberOfSubjects = 800,
calcEventsFunction = myCalcEventsFunction,
seed = 1234,
maxNumberOfIterations = 50

)

End(Not run)

getStageResults Get Stage Results

Description

Returns summary statistics and p-values for a given data set and a given design.

Usage

getStageResults(design, dataInput, ..., stage = NA_integer_)

Arguments

design The trial design.
dataInput The summary data used for calculating the test results. This is either an element

of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

... Further (optional) arguments to be passed:
thetaH0 The null hypothesis value, default is 0 for the normal and the binary

case (testing means and rates, respectively), it is 1 for the survival case (test-
ing the hazard ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is,
in case of (one-sided) testing of

178 getStageResults

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2)
can be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified
for defining the null hypothesis H0: pi = thetaH0.

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

directionUpper The direction of one-sided testing. Default is TRUE which
means that larger values of the test statistics yield smaller p-values.

intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple hypotheses. Five
options are available in multi-arm designs: "Dunnett", "Bonferroni",
"Simes", "Sidak", and "Hierarchical", default is "Dunnett". Four op-
tions are available in population enrichment designs: "SpiessensDebois"
(one subset only), "Bonferroni", "Simes", and "Sidak", default is "Simes".

varianceOption Defines the way to calculate the variance in multiple treat-
ment arms (> 2) or population enrichment designs for testing means. For
multiple arms, three options are available: "overallPooled", "pairwisePooled",
and "notPooled", default is "overallPooled". For enrichment designs,
the options are: "pooled", "pooledFromFull" (one subset only), and "notPooled",
default is "pooled".

stratifiedAnalysis For enrichment designs, typically a stratified analysis
should be chosen. For testing means and rates, also a non-stratified analysis
based on overall data can be performed. For survival data, only a stratified
analysis is possible (see Brannath et al., 2009), default is TRUE.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

Calculates and returns the stage results of the specified design and data input at the specified stage.

Value

Returns a StageResults object.

• names to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

getTestActions 179

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getTestActions()

Examples

design <- getDesignInverseNormal()
dataRates <- getDataset(

n1 = c(10, 10),
n2 = c(20, 20),
events1 = c(8, 10),
events2 = c(10, 16))

getStageResults(design, dataRates)

getTestActions Get Test Actions

Description

Returns test actions.

Usage

getTestActions(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Only available for backward compatibility.

Details

Returns the test actions of the specified design and stage results at the specified stage.

Value

Returns a character vector of length kMax Returns a numeric vector of length kMaxcontaining the
test actions of each stage.

180 getWideFormat

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults()

Examples

design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getTestActions(getStageResults(design, dataInput = data))

getWideFormat Get Wide Format

Description

Returns the specified dataset as a data.frame in so-called wide format.

Usage

getWideFormat(dataInput)

Details

In the wide format (unstacked), the data are presented with each different data variable in a separate
column, i.e., the different groups are in separate columns.

Value

A data.frame will be returned.

See Also

getLongFormat() for returning the dataset as a data.frame in long format.

kable 181

kable Create tables in Markdown

Description

The kable() function returns a single table for a single object that inherits from class ParameterSet.

Usage

kable(x, ...)

Arguments

x The object that inherits from ParameterSet.

... Other arguments (see kable).

Details

Generic to represent a parameter set in Markdown.

kable.ParameterSet Create output in Markdown

Description

The kable() function returns the output of the specified object formatted in Markdown.

Usage

kable.ParameterSet(x, ...)

Arguments

x A ParameterSet. If x does not inherit from class ParameterSet, knitr::kable(x)
will be returned.

... Other arguments (see kable).

Details

Generic function to represent a parameter set in Markdown. Use options("rpact.print.heading.base.number"
= "NUMBER") (where NUMBER is an integer value >= -1) to specify the heading level. The default is
options("rpact.print.heading.base.number" = "0"), i.e., the top headings start with ## in
Markdown. options("rpact.print.heading.base.number" = "-1") means that all headings
will be written bold but are not explicit defined as header.

182 knit_print.SummaryFactory

knit_print.ParameterSet

Print Parameter Set in Markdown Code Chunks

Description

The function knit_print.ParameterSet is the default printing function for rpact result objects in
knitr. The chunk option render uses this function by default. To fall back to the normal printing
behavior set the chunk option render = normal_print. For more information see knit_print.

Usage

S3 method for class 'ParameterSet'
knit_print(x, ...)

Arguments

x A ParameterSet.

... Other arguments (see knit_print).

Details

Generic function to print a parameter set in Markdown. Use options("rpact.print.heading.base.number"
= "NUMBER") (where NUMBER is an integer value >= -1) to specify the heading level. The default is
options("rpact.print.heading.base.number" = "0"), i.e., the top headings start with ## in
Markdown. options("rpact.print.heading.base.number" = "-1") means that all headings
will be written bold but are not explicit defined as header.

knit_print.SummaryFactory

Print Summary Factory in Markdown Code Chunks

Description

The function knit_print.SummaryFactory is the default printing function for rpact summary ob-
jects in knitr. The chunk option render uses this function by default. To fall back to the nor-
mal printing behavior set the chunk option render = normal_print. For more information see
knit_print.

Usage

S3 method for class 'SummaryFactory'
knit_print(x, ...)

Arguments

x A SummaryFactory.

... Other arguments (see knit_print).

length.TrialDesignSet 183

Details

Generic function to print a summary object in Markdown. Use options("rpact.print.heading.base.number"
= "NUMBER") (where NUMBER is an integer value >= -1) to specify the heading level. The default is
options("rpact.print.heading.base.number" = "0"), i.e., the top headings start with ## in
Markdown. options("rpact.print.heading.base.number" = "-1") means that all headings
will be written bold but are not explicit defined as header.

length.TrialDesignSet Length of Trial Design Set

Description

Returns the number of designs in a TrialDesignSet.

Usage

S3 method for class 'TrialDesignSet'
length(x)

Arguments

x A TrialDesignSet object.

Details

Is helpful for iteration over all designs in a design set.

Value

Returns a non-negative integer of length 1 representing the number of design in the TrialDesignSet.

Examples

designSet <- getDesignSet(design = getDesignGroupSequential(), alpha = c(0.01, 0.05))
length(designSet)

mvnprd Original Algorithm AS 251: Normal Distribution

Description

Calculates the Multivariate Normal Distribution with Product Correlation Structure published by
Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3 doi:10.2307/2347754.

Usage

mvnprd(..., A, B, BPD, EPS = 1e-06, INF, IERC = 1, HINC = 0)

https://doi.org/10.2307/2347754

184 mvstud

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

A Upper limits of integration. Array of N dimensions

B Lower limits of integration. Array of N dimensions

BPD Values defining correlation structure. Array of N dimensions

EPS desired accuracy. Defaults to 1e-06

INF Determines where integration is done to infinity. Array of N dimensions. Valid
values for INF(I): 0 = c(B(I), Inf), 1 = c(-Inf, A(I)), 2 = c(B(I), A(I))

IERC error control. If set to 1, strict error control based on fourth derivative is used. If
set to zero, error control based on halving intervals is used

HINC Interval width for Simpson’s rule. Value of zero caused a default .24 to be used

Details

This is a wrapper function for the original Fortran 77 code. For a multivariate normal vector with
correlation structure defined by RHO(I,J) = BPD(I) * BPD(J), computes the probability that the
vector falls in a rectangle in n-space with error less than eps.

mvstud Original Algorithm AS 251: Student T Distribution

Description

Calculates the Multivariate Normal Distribution with Product Correlation Structure published by
Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3 doi:10.2307/2347754.

Usage

mvstud(..., NDF, A, B, BPD, D, EPS = 1e-06, INF, IERC = 1, HINC = 0)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

NDF Degrees of Freedom. Use 0 for infinite D.F.

A Upper limits of integration. Array of N dimensions

B Lower limits of integration. Array of N dimensions

BPD Values defining correlation structure. Array of N dimensions

D Non-Centrality Vector

EPS desired accuracy. Defaults to 1e-06

INF Determines where integration is done to infinity. Array of N dimensions. Valid
values for INF(I): 0 = c(B(I), Inf), 1 = c(-Inf, A(I)), 2 = c(B(I), A(I))

IERC error control. If set to 1, strict error control based on fourth derivative is used. If
set to zero, error control based on halving intervals is used

HINC Interval width for Simpson’s rule. Value of zero caused a default .24 to be used

https://doi.org/10.2307/2347754

names.AnalysisResults 185

Details

This is a wrapper function for the original Fortran 77 code. For a multivariate normal vector with
correlation structure defined by RHO(I,J) = BPD(I) * BPD(J), computes the probability that the
vector falls in a rectangle in n-space with error less than eps.

Examples

N <- 3
RHO <- 0.5
B <- rep(-5.0, length = N)
A <- rep(5.0, length = N)
INF <- rep(2, length = N)
BPD <- rep(sqrt(RHO), length = N)
D <- rep(0.0, length = N)
result <- mvstud(NDF = 0, A = A, B = B, BPD = BPD, INF = INF, D = D)
result

names.AnalysisResults Names of a Analysis Results Object

Description

Function to get the names of an AnalysisResults object.

Usage

S3 method for class 'AnalysisResults'
names(x)

Arguments

x An AnalysisResults object created by getAnalysisResults().

Details

Returns the names of an analysis results that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

186 names.SimulationResults

names.FieldSet Names of a Field Set Object

Description

Function to get the names of a FieldSet object.

Usage

S3 method for class 'FieldSet'
names(x)

Arguments

x A FieldSet object.

Details

Returns the names of a field set that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

names.SimulationResults

Names of a Simulation Results Object

Description

Function to get the names of a SimulationResults object.

Usage

S3 method for class 'SimulationResults'
names(x)

Arguments

x A SimulationResults object created by getSimulationResults[MultiArm/Enrichment][Means/Rates/Survival].

Details

Returns the names of a simulation results that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

names.StageResults 187

names.StageResults Names of a Stage Results Object

Description

Function to get the names of a StageResults object.

Usage

S3 method for class 'StageResults'
names(x)

Arguments

x A StageResults object.

Details

Returns the names of stage results that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

names.TrialDesignSet Names of a Trial Design Set Object

Description

Function to get the names of a TrialDesignSet object.

Usage

S3 method for class 'TrialDesignSet'
names(x)

Arguments

x A TrialDesignSet object.

Details

Returns the names of a design set that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

Examples

designSet <- getDesignSet(design = getDesignGroupSequential(), alpha = c(0.01, 0.05))
names(designSet)

188 param_accrualIntensity

NumberOfSubjects Number Of Subjects

Description

Class for the definition of number of subjects results.

Details

NumberOfSubjects is a class for the definition of number of subjects results.

Fields

time The time values. Is a numeric vector.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.

accrualIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

numberOfSubjects In simulation results data set: The number of subjects under consideration
when the interim analysis takes place.

ParameterSet Parameter Set

Description

Basic class for parameter sets.

Details

The parameter set implements basic functions for a set of parameters.

param_accrualIntensity

Parameter Description: Accrual Intensity

Description

Parameter Description: Accrual Intensity

Arguments

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

param_accrualIntensityType 189

param_accrualIntensityType

Parameter Description: Accrual Intensity Type

Description

Parameter Description: Accrual Intensity Type

Arguments

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

param_accrualIntensity_counts

Parameter Description: accrualIntensity for Counts

Description

Parameter Description: accrualIntensity for Counts

Arguments

accrualIntensity

If specified, the assumed accrual intensities for the study, there is no default.

param_accrualTime Parameter Description: Accrual Time

Description

Parameter Description: Accrual Time

Arguments

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

190 param_adaptations

param_accrualTime_counts

Parameter Description: accrualTime for Counts

Description

Parameter Description: accrualTime for Counts

Arguments

accrualTime If specified, the assumed accrual time interval(s) for the study, there is no de-
fault.

param_activeArms Parameter Description: Active Arms

Description

Parameter Description: Active Arms

Arguments

activeArms The number of active treatment arms to be compared with control, default is 3.

param_adaptations Parameter Description: Adaptations

Description

Parameter Description: Adaptations

Arguments

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

param_allocationRatioPlanned 191

param_allocationRatioPlanned

Parameter Description: Allocation Ratio Planned

Description

Parameter Description: Allocation Ratio Planned

Arguments

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

param_allocationRatioPlanned_sampleSize

Parameter Description: Allocation Ratio Planned With Optimum Op-
tion

Description

Parameter Description: Allocation Ratio Planned With Optimum Option

Arguments

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

param_alpha Parameter Description: Alpha

Description

Parameter Description: Alpha

Arguments

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

192 param_beta

param_alternative Parameter Description: Alternative

Description

Parameter Description: Alternative

Arguments

alternative The alternative hypothesis value for testing means. This can be a vector of as-
sumed alternatives, default is seq(0, 1, 0.2) (power calculations) or seq(0.2,
1, 0.2) (sample size calculations).

param_alternative_simulation

Parameter Description: Alternative for Simulation

Description

Parameter Description: Alternative for Simulation

Arguments

alternative The alternative hypothesis value for testing means under which the data is sim-
ulated. This can be a vector of assumed alternatives, default is seq(0, 1, 0.2).

param_beta Parameter Description: Beta

Description

Parameter Description: Beta

Arguments

beta Type II error rate, necessary for providing sample size calculations (e.g., getSampleSizeMeans()),
beta spending function designs, or optimum designs, default is 0.20. Must be a
positive numeric of length 1.

param_bindingFutility 193

param_bindingFutility Parameter Description: Binding Futility

Description

Parameter Description: Binding Futility

Arguments

bindingFutility

Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in
the sense that the study must be stopped if the futility condition was reached
(default is FALSE).

param_calcEventsFunction

Parameter Description: Calculate Events Function

Description

Parameter Description: Calculate Events Function

Arguments

calcEventsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, event number recalculation is performed with
conditional power and specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

param_calcSubjectsFunction

Parameter Description: Calculate Subjects Function

Description

Parameter Description: Calculate Subjects Function

Arguments

calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

194 param_dataInput

param_conditionalPower

Parameter Description: Conditional Power

Description

Parameter Description: Conditional Power

Arguments

conditionalPower

The conditional power for the subsequent stage under which the sample size
recalculation is performed. Must be a positive numeric of length 1.

param_conditionalPowerSimulation

Parameter Description: Conditional Power

Description

Parameter Description: Conditional Power

Arguments

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

param_dataInput Parameter Description: Data Input

Description

Parameter Description: Data Input

Arguments

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

param_design 195

param_design Parameter Description: Design

Description

Parameter Description: Design

Arguments

design The trial design.

param_design_with_default

Parameter Description: Design with Default

Description

Parameter Description: Design with Default

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

param_digits Parameter Description: Digits

Description

Parameter Description: Digits

Arguments

digits Defines how many digits are to be used for numeric values. Must be a positive
integer of length 1.

param_directionUpper Parameter Description: Direction Upper

Description

Parameter Description: Direction Upper

Arguments

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

196 param_effectList

param_dropoutRate1 Parameter Description: Dropout Rate (1)

Description

Parameter Description: Dropout Rate (1)

Arguments

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

param_dropoutRate2 Parameter Description: Dropout Rate (2)

Description

Parameter Description: Dropout Rate (2)

Arguments

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

param_dropoutTime Parameter Description: Dropout Time

Description

Parameter Description: Dropout Time

Arguments

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

param_effectList Parameter Description: Effect List

Description

Parameter Description: Effect List

Arguments

effectList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).

param_effectMatrix 197

param_effectMatrix Parameter Description: Effect Matrix

Description

Parameter Description: Effect Matrix

Arguments

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

param_effectMeasure Parameter Description: Effect Measure

Description

Parameter Description: Effect Measure

Arguments

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

param_epsilonValue Parameter Description: Epsilon Value

Description

Parameter Description: Epsilon Value

Arguments

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

param_eventTime Parameter Description: Event Time

Description

Parameter Description: Event Time

Arguments

eventTime The assumed time under which the event rates are calculated, default is 12.

198 param_gED50

param_fixedExposureTime_counts

Parameter Description: fixedExposureTime for Counts

Description

Parameter Description: fixedExposureTime for Counts

Arguments

fixedExposureTime

If specified, the fixed time of exposure per subject for count data, there is no
default.

param_followUpTime_counts

Parameter Description: followUpTime for Counts

Description

Parameter Description: followUpTime for Counts

Arguments

followUpTime If specified, The assumed (additional) follow-up time for the study, there is no
default. The total study duration is accrualTime + followUpTime.

param_gED50 Parameter Description: G ED50

Description

Parameter Description: G ED50

Arguments

gED50 If typeOfShape = "sigmoidEmax" is selected, "gED50" has to be entered to
specify the ED50 of the sigmoid Emax model.

param_grid 199

param_grid Parameter Description: Grid (Output Specification Of Multiple Plots)

Description

Parameter Description: Grid (Output Specification Of Multiple Plots)

Arguments

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

param_groups Parameter Description: Number Of Treatment Groups

Description

Parameter Description: Number Of Treatment Groups

Arguments

groups The number of treatment groups (1 or 2), default is 2.

param_hazardRatio Parameter Description: Hazard Ratio

Description

Parameter Description: Hazard Ratio

Arguments

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

200 param_informationRates

param_includeAllParameters

Parameter Description: Include All Parameters

Description

Parameter Description: Include All Parameters

Arguments

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

param_informationEpsilon

Parameter Description: Information Epsilon

Description

Parameter Description: Information Epsilon

Arguments

informationEpsilon

Positive integer value specifying the absolute information epsilon, which de-
fines the maximum distance from the observed information to the maximum
information that causes the final analysis. Updates at the final analysis in case
the observed information at the final analysis is smaller ("under-running") than
the planned maximum information maxInformation, default is 0. Alternatively,
a floating-point number > 0 and < 1 can be specified to define a relative infor-
mation epsilon.

param_informationRates

Parameter Description: Information Rates

Description

Parameter Description: Information Rates

Arguments

informationRates

The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax.

param_intersectionTest_Enrichment 201

param_intersectionTest_Enrichment

Parameter Description: Intersection Test

Description

Parameter Description: Intersection Test

Arguments

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois",
"Bonferroni", "Simes", and "Sidak", default is "Simes".

param_intersectionTest_MultiArm

Parameter Description: Intersection Test

Description

Parameter Description: Intersection Test

Arguments

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett",
"Bonferroni", "Simes", "Sidak", and "Hierarchical", default is "Dunnett".

param_kappa Parameter Description: Kappa

Description

Parameter Description: Kappa

Arguments

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

202 param_lambda2

param_kMax Parameter Description: Maximum Number of Stages

Description

Parameter Description: Maximum Number of Stages

Arguments

kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 20 for group sequential or inverse
normal and 6 for Fisher combination test designs.

param_lambda1 Parameter Description: Lambda (1)

Description

Parameter Description: Lambda (1)

Arguments

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

param_lambda1_counts Parameter Description: lambda (1) for Counts

Description

Parameter Description: lambda (1) for Counts

Arguments

lambda1 A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the active treatment group, there is no default.

param_lambda2 Parameter Description: Lambda (2)

Description

Parameter Description: Lambda (2)

Arguments

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

param_lambda2_counts 203

param_lambda2_counts Parameter Description: lambda (2) for Counts

Description

Parameter Description: lambda (2) for Counts

Arguments

lambda2 A numeric value that represents the assumed rate of a homogeneous Poisson
process in the control group, there is no default.

param_lambda_counts Parameter Description: lambda for Counts

Description

Parameter Description: lambda for Counts

Arguments

lambda A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the pooled treatment groups, there is no default.

param_legendPosition Parameter Description: Legend Position On Plots

Description

Parameter Description: Legend Position On Plots

Arguments

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

204 param_maxNumberOfIterations

param_maxInformation Parameter Description: Maximum Information

Description

Parameter Description: Maximum Information

Arguments

maxInformation Positive integer value specifying the maximum information.

param_maxNumberOfEventsPerStage

Parameter Description: Max Number Of Events Per Stage

Description

Parameter Description: Max Number Of Events Per Stage

Arguments

maxNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

param_maxNumberOfIterations

Parameter Description: Maximum Number Of Iterations

Description

Parameter Description: Maximum Number Of Iterations

Arguments

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

param_maxNumberOfSubjects 205

param_maxNumberOfSubjects

Parameter Description: Maximum Number Of Subjects

Description

Parameter Description: Maximum Number Of Subjects

Arguments

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

param_maxNumberOfSubjectsPerStage

Parameter Description: Maximum Number Of Subjects Per Stage

Description

Parameter Description: Maximum Number Of Subjects Per Stage

Arguments

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

param_maxNumberOfSubjects_survival

Parameter Description: Maximum Number Of Subjects For Survival
Endpoint

Description

Parameter Description: Maximum Number Of Subjects For Survival Endpoint

Arguments

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. If accrual time and accrual
intensity are specified, this will be calculated. Must be a positive integer of
length 1.

206 param_minNumberOfEventsPerStage

param_median1 Parameter Description: Median (1)

Description

Parameter Description: Median (1)

Arguments

median1 The assumed median survival time in the treatment group, there is no default.

param_median2 Parameter Description: Median (2)

Description

Parameter Description: Median (2)

Arguments

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

param_minNumberOfEventsPerStage

Parameter Description: Min Number Of Events Per Stage

Description

Parameter Description: Min Number Of Events Per Stage

Arguments

minNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

param_minNumberOfSubjectsPerStage 207

param_minNumberOfSubjectsPerStage

Parameter Description: Minimum Number Of Subjects Per Stage

Description

Parameter Description: Minimum Number Of Subjects Per Stage

Arguments

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs minNumberOfSubjectsPerStage refers
to the minimum number of subjects per selected active arm.

param_niceColumnNamesEnabled

Parameter Description: Nice Column Names Enabled

Description

Parameter Description: Nice Column Names Enabled

Arguments

niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

param_nMax Parameter Description: N_max

Description

Parameter Description: N_max

Arguments

nMax The maximum sample size. Must be a positive integer of length 1.

208 param_overdispersion_counts

param_normalApproximation

Parameter Description: Normal Approximation

Description

Parameter Description: Normal Approximation

Arguments

normalApproximation

The type of computation of the p-values. Default is FALSE for testing means (i.e.,
the t test is used) and TRUE for testing rates and the hazard ratio. For testing rates,
if normalApproximation = FALSE is specified, the binomial test (one sample)
or the exact test of Fisher (two samples) is used for calculating the p-values. In
the survival setting normalApproximation = FALSE has no effect.

param_nPlanned Parameter Description: N Planned

Description

Parameter Description: N Planned

Arguments

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

param_overdispersion_counts

Parameter Description: overdispersion for Counts

Description

Parameter Description: overdispersion for Counts

Arguments

overdispersion A numeric value that represents the assumed overdispersion of the negative bi-
nomial distribution, default is 0.

param_palette 209

param_palette Parameter Description: Palette

Description

Parameter Description: Palette

Arguments

palette The palette, default is "Set1".

param_pi1_rates Parameter Description: Pi (1) for Rates

Description

Parameter Description: Pi (1) for Rates

Arguments

pi1 A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(0.2, 0.5, 0.1)
(power calculations and simulations) or seq(0.4, 0.6, 0.1) (sample size cal-
culations).

param_pi1_survival Parameter Description: Pi (1) for Survival Data

Description

Parameter Description: Pi (1) for Survival Data

Arguments

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

param_pi2_rates Parameter Description: Pi (2) for Rates

Description

Parameter Description: Pi (2) for Rates

Arguments

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

210 param_plannedEvents

param_pi2_survival Parameter Description: Pi (2) for Survival Data

Description

Parameter Description: Pi (2) for Survival Data

Arguments

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

param_piecewiseSurvivalTime

Parameter Description: Piecewise Survival Time

Description

Parameter Description: Piecewise Survival Time

Arguments

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

param_plannedEvents Parameter Description: Planned Events

Description

Parameter Description: Planned Events

Arguments

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

param_plannedSubjects 211

param_plannedSubjects Parameter Description: Planned Subjects

Description

Parameter Description: Planned Subjects

Arguments

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

param_plotPointsEnabled

Parameter Description: Plot Points Enabled

Description

Parameter Description: Plot Points Enabled

Arguments

plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

param_plotSettings Parameter Description: Plot Settings

Description

Parameter Description: Plot Settings

Arguments

plotSettings An object of class PlotSettings created by getPlotSettings().

212 param_selectArmsFunction

param_populations Parameter Description: Populations

Description

Parameter Description: Populations

Arguments

populations The number of populations in a two-sample comparison, default is 3.

param_rValue Parameter Description: R Value

Description

Parameter Description: R Value

Arguments

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

param_seed Parameter Description: Seed

Description

Parameter Description: Seed

Arguments

seed The seed to reproduce the simulation, default is a random seed.

param_selectArmsFunction

Parameter Description: Select Arms Function

Description

Parameter Description: Select Arms Function

Arguments

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment arms
are selected. This function is allowed to depend on effectVector with length
activeArms and stage (see examples).

param_selectPopulationsFunction 213

param_selectPopulationsFunction

Parameter Description: Select Populations Function

Description

Parameter Description: Select Populations Function

Arguments

selectPopulationsFunction

Optionally, a function can be entered that defines the way of how populations
are selected. This function is allowed to depend on effectVector with length
populations and stage (see examples).

param_showSource Parameter Description: Show Source

Description

Parameter Description: Show Source

Arguments

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

param_showStatistics Parameter Description: Show Statistics

Description

Parameter Description: Show Statistics

Arguments

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

214 param_stageResults

param_sided Parameter Description: Sided

Description

Parameter Description: Sided

Arguments

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

param_slope Parameter Description: Slope

Description

Parameter Description: Slope

Arguments

slope If typeOfShape = "sigmoidEmax" is selected, "slope" can be entered to spec-
ify the slope of the sigmoid Emax model, default is 1.

param_stage Parameter Description: Stage

Description

Parameter Description: Stage

Arguments

stage The stage number (optional). Default: total number of existing stages in the data
input.

param_stageResults Parameter Description: Stage Results

Description

Parameter Description: Stage Results

Arguments

stageResults The results at given stage, obtained from getStageResults().

param_stDev 215

param_stDev Parameter Description: Standard Deviation

Description

Parameter Description: Standard Deviation

Arguments

stDev The standard deviation under which the sample size or power calculation is per-
formed, default is 1. If meanRatio = TRUE is specified, stDev defines the coeffi-
cient of variation sigma / mu2. Must be a positive numeric of length 1.

param_stDevH1 Parameter Description: Standard Deviation Under Alternative

Description

Parameter Description: Standard Deviation Under Alternative

Arguments

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev. Must be a positive numeric of length 1.

param_stDevSimulation Parameter Description: Standard Deviation for Simulation

Description

Parameter Description: Standard Deviation for Simulation

Arguments

stDev The standard deviation under which the data is simulated, default is 1. If meanRatio
= TRUE is specified, stDev defines the coefficient of variation sigma / mu2. Must
be a positive numeric of length 1.

216 param_theta

param_stratifiedAnalysis

Parameter Description: Stratified Analysis

Description

Parameter Description: Stratified Analysis

Arguments

stratifiedAnalysis

Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

param_successCriterion

Parameter Description: Success Criterion

Description

Parameter Description: Success Criterion

Arguments

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

param_theta Parameter Description: Theta

Description

Parameter Description: Theta

Arguments

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

param_thetaH0 217

param_thetaH0 Parameter Description: Theta H0

Description

Parameter Description: Theta H0

Arguments

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

param_thetaH1 Parameter Description: Effect Under Alternative

Description

Parameter Description: Effect Under Alternative

Arguments

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

param_theta_counts Parameter Description: theta for Counts

Description

Parameter Description: theta for Counts

Arguments

theta A numeric value or vector that represents the assumed mean ratios lambda1/lambda2
of a homogeneous Poisson process, there is no default.

218 param_tolerance

param_three_dots Parameter Description: "..."

Description

Parameter Description: "..."

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

param_three_dots_plot Parameter Description: "..." (optional plot arguments)

Description

Parameter Description: "..." (optional plot arguments)

Arguments

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

param_threshold Parameter Description: Threshold

Description

Parameter Description: Threshold

Arguments

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

param_tolerance Parameter Description: Tolerance

Description

Parameter Description: Tolerance

Arguments

tolerance The numerical tolerance, default is 1e-06. Must be a positive numeric of length
1.

param_typeOfComputation 219

param_typeOfComputation

Parameter Description: Type Of Computation

Description

Parameter Description: Type Of Computation

Arguments

typeOfComputation

Three options are available: "Schoenfeld", "Freedman", "HsiehFreedman",
the default is "Schoenfeld". For details, see Hsieh (Statistics in Medicine,
1992). For non-inferiority testing (i.e., thetaH0 != 1), only Schoenfeld’s for-
mula can be used.

param_typeOfDesign Parameter Description: Type of Design

Description

Parameter Description: Type of Design

Arguments

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Pampallona & Tsiatis
("PT"), Haybittle & Peto ("HP"), Optimum design within Wang & Tsiatis class
("WToptimum"), O’Brien & Fleming type alpha spending ("asOF"), Pocock type
alpha spending ("asP"), Kim & DeMets alpha spending ("asKD"), Hwang, Shi
& DeCani alpha spending ("asHSD"), user defined alpha spending ("asUser"),
no early efficacy stop ("noEarlyEfficacy"), default is "OF".

param_typeOfSelection Parameter Description: Type of Selection

Description

Parameter Description: Type of Selection

220 param_userAlphaSpending

Arguments

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

param_typeOfShape Parameter Description: Type Of Shape

Description

Parameter Description: Type Of Shape

Arguments

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined", default is "linear".
For "linear", "muMaxVector" specifies the range of effect sizes for the treat-
ment group with highest response. If "sigmoidEmax" is selected, "gED50" and
"slope" has to be entered to specify the ED50 and the slope of the sigmoid
Emax model. For "sigmoidEmax", "muMaxVector" specifies the range of ef-
fect sizes for the treatment group with response according to infinite dose. If
"userDefined" is selected, "effectMatrix" has to be entered.

param_userAlphaSpending

Parameter Description: User Alpha Spending

Description

Parameter Description: User Alpha Spending

Arguments

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

param_varianceOption 221

param_varianceOption Parameter Description: Variance Option

Description

Parameter Description: Variance Option

Arguments

varianceOption Defines the way to calculate the variance in multiple treatment arms (> 2) or pop-
ulation enrichment designs for testing means. For multiple arms, three options
are available: "overallPooled", "pairwisePooled", and "notPooled", de-
fault is "overallPooled". For enrichment designs, the options are: "pooled",
"pooledFromFull" (one subset only), and "notPooled", default is "pooled".

PerformanceScore Performance Score

Description

Contains the conditional performance score, its sub-scores and components according to Herrmann
et al. (2020) for a given simulation result.

Details

Use getPerformanceScore to calculate the performance score.

PiecewiseSurvivalTime Piecewise Exponential Survival Time

Description

Class for the definition of piecewise survival times.

Details

PiecewiseSurvivalTime is a class for the definition of piecewise survival times.

Fields

piecewiseSurvivalTime The time intervals for the piecewise definition of the exponential sur-
vival time cumulative distribution function. Is a numeric vector.

lambda1 The assumed hazard rate in the treatment group. Is a numeric vector of length kMax.

lambda2 The assumed hazard rate in the reference group. Is a numeric vector of length 1.

hazardRatio The hazard ratios under consideration. Is a numeric vector of length kMax.

pi1 The assumed event rate in the treatment group. Is a numeric vector of length kMax containing
values between 0 and 1.

222 plot.AnalysisResults

pi2 The assumed event rate in the control group. Is a numeric vector of length 1 containing a value
between 0 and 1.

median1 The assumed median survival time in the treatment group. Is a numeric vector.

median2 The assumed median survival time in the reference group. Is a numeric vector of length
1.

eventTime The assumed time under which the event rates are calculated. Is a numeric vector of
length 1.

kappa The shape of the Weibull distribution if kappa!=1. Is a numeric vector of length 1.

piecewiseSurvivalEnabled Indicates whether specification of piecewise definition of survival
time is selected. Is a logical vector of length 1.

delayedResponseAllowed If TRUE, delayed response is allowed, if FALSE the response is not de-
layed.

delayedResponseEnabled If TRUE, delayed response is enabled, if FALSE delayed response is not
enabled.

plot.AnalysisResults Analysis Results Plotting

Description

Plots the conditional power together with the likelihood function.

Usage

S3 method for class 'AnalysisResults'
plot(
x,
y,
...,
type = 1L,
nPlanned = NA_real_,
allocationRatioPlanned = NA_real_,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
legendTitle = NA_character_,
palette = "Set1",
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

Arguments

x The analysis results at given stage, obtained from getAnalysisResults().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

plot.AnalysisResults 223

... Optional plot arguments. Furthermore the following arguments can be defined:

• thetaRange: A range of assumed effect sizes if testing means or a sur-
vival design was specified. Additionally, if testing means was selected,
assumedStDev (assumed standard deviation) can be specified (default is 1).

• piTreatmentRange: A range of assumed rates pi1 to calculate the condi-
tional power. Additionally, if a two-sample comparison was selected, pi2
can be specified (default is the value from getAnalysisResults()).

• directionUpper: Specifies the direction of the alternative, only applicable
for one-sided testing; default is TRUE which means that larger values of the
test statistics yield smaller p-values.

• thetaH0: The null hypothesis value, default is 0 for the normal and the
binary case, it is 1 for the survival case. For testing a rate in one sample, a
value thetaH0 in (0, 1) has to be specified for defining the null hypothesis
H0: pi = thetaH0.

type The plot type (default = 1). Note that at the moment only one type (the condi-
tional power plot) is available.

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

main The main title, default is "Dataset".

xlab The x-axis label, default is "Stage".

ylab The y-axis label.

legendTitle The legend title, default is "".

palette The palette, default is "Set1".

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

224 plot.AnalysisResults

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands

• "axes": returns a list with the axes definitions

• "test": all plot commands will be validated with eval(parse()) and re-
turned as character vector (function does not stop if an error occurs)

• "validate": all plot commands will be validated with eval(parse()) and
returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

The conditional power is calculated only if effect size and sample size is specified.

Value

Returns a ggplot2 object.

Examples

Not run:
design <- getDesignGroupSequential(kMax = 2)

dataExample <- getDataset(
n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)

result <- getAnalysisResults(design = design,
dataInput = dataExample, thetaH0 = 20,
nPlanned = c(30), thetaH1 = 1.5, stage = 1)

if (require(ggplot2)) plot(result, thetaRange = c(0, 100))

End(Not run)

plot.Dataset 225

plot.Dataset Dataset Plotting

Description

Plots a dataset.

Usage

S3 method for class 'Dataset'
plot(
x,
y,
...,
main = "Dataset",
xlab = "Stage",
ylab = NA_character_,
legendTitle = "Group",
palette = "Set1",
showSource = FALSE,
plotSettings = NULL

)

Arguments

x The Dataset object to plot.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title, default is "Dataset".

xlab The x-axis label, default is "Stage".

ylab The y-axis label.

legendTitle The legend title, default is "Group".

palette The palette, default is "Set1".

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSettings().

226 plot.EventProbabilities

Details

Generic function to plot all kinds of datasets.

Value

Returns a ggplot2 object.

Examples

Plot a dataset of means
dataExample <- getDataset(

n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)
Not run:
if (require(ggplot2)) plot(dataExample, main = "Comparison of Means")

End(Not run)

Plot a dataset of rates
dataExample <- getDataset(

n1 = c(8, 10, 9, 11),
n2 = c(11, 13, 12, 13),
events1 = c(3, 5, 5, 6),
events2 = c(8, 10, 12, 12)

)
Not run:
if (require(ggplot2)) plot(dataExample, main = "Comparison of Rates")

End(Not run)

plot.EventProbabilities

Event Probabilities Plotting

Description

Plots an object that inherits from class EventProbabilities.

Usage

S3 method for class 'EventProbabilities'
plot(
x,
y,
...,
allocationRatioPlanned = x$allocationRatioPlanned,
main = NA_character_,

plot.EventProbabilities 227

xlab = NA_character_,
ylab = NA_character_,
type = 1L,
legendTitle = NA_character_,
palette = "Set1",
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
plotSettings = NULL

)

Arguments

x The object that inherits from EventProbabilities.

y An optional object that inherits from NumberOfSubjects.

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). Note that at the moment only one type is available.

legendTitle The legend title, default is "".

palette The palette, default is "Set1".
plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

228 plot.NumberOfSubjects

• "commands": returns a character vector with plot commands

• "axes": returns a list with the axes definitions

• "test": all plot commands will be validated with eval(parse()) and re-
turned as character vector (function does not stop if an error occurs)

• "validate": all plot commands will be validated with eval(parse()) and
returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

Generic function to plot an event probabilities object.

Generic function to plot a parameter set.

Value

Returns a ggplot2 object.

plot.NumberOfSubjects Number Of Subjects Plotting

Description

Plots an object that inherits from class NumberOfSubjects.

Usage

S3 method for class 'NumberOfSubjects'
plot(
x,
y,
...,
allocationRatioPlanned = NA_real_,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
legendTitle = NA_character_,
palette = "Set1",
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
plotSettings = NULL

)

plot.NumberOfSubjects 229

Arguments

x The object that inherits from NumberOfSubjects.

y An optional object that inherits from EventProbabilities.

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. Will be ignored if y is undefined.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). Note that at the moment only one type is available.

legendTitle The legend title, default is "".

palette The palette, default is "Set1".
plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

Generic function to plot an "number of subjects" object.

Generic function to plot a parameter set.

230 plot.ParameterSet

Value

Returns a ggplot2 object.

plot.ParameterSet Parameter Set Plotting

Description

Plots an object that inherits from class ParameterSet.

Usage

S3 method for class 'ParameterSet'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
palette = "Set1",
legendPosition = NA_integer_,
showSource = FALSE,
plotSettings = NULL

)

Arguments

x The object that inherits from ParameterSet.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1).

palette The palette, default is "Set1".

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center

plot.SimulationResults 231

• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)
Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

Generic function to plot a parameter set.

Value

Returns a ggplot2 object.

plot.SimulationResults

Simulation Results Plotting

Description

Plots simulation results.

Usage

S3 method for class 'SimulationResults'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
palette = "Set1",
theta = seq(-1, 1, 0.01),
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

232 plot.SimulationResults

Arguments

x The simulation results, obtained from
getSimulationSurvival().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Overall Success’ plot (multi-arm and enrichment only)
• 2: creates a ’Success per Stage’ plot (multi-arm and enrichment only)
• 3: creates a ’Selected Arms per Stage’ plot (multi-arm and enrichment only)
• 4: creates a ’Reject per Stage’ or ’Rejected Arms per Stage’ plot
• 5: creates a ’Overall Power and Early Stopping’ plot
• 6: creates a ’Expected Number of Subjects and Power / Early Stop’ or

’Expected Number of Events and Power / Early Stop’ plot
• 7: creates an ’Overall Power’ plot
• 8: creates an ’Overall Early Stopping’ plot
• 9: creates an ’Expected Sample Size’ or ’Expected Number of Events’ plot
• 10: creates a ’Study Duration’ plot (non-multi-arm and non-enrichment

survival only)
• 11: creates an ’Expected Number of Subjects’ plot (non-multi-arm and non-

enrichment survival only)
• 12: creates an ’Analysis Times’ plot (non-multi-arm and non-enrichment

survival only)
• 13: creates a ’Cumulative Distribution Function’ plot (non-multi-arm and

non-enrichment survival only)
• 14: creates a ’Survival Function’ plot (non-multi-arm and non-enrichment

survival only)
• "all": creates all available plots and returns it as a grid plot or list

palette The palette, default is "Set1".

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom

plot.StageResults 233

• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

Generic function to plot all kinds of simulation results.

Value

Returns a ggplot2 object.

Examples

Not run:
results <- getSimulationMeans(

alternative = 0:4, stDev = 5,
plannedSubjects = 40, maxNumberOfIterations = 1000

)
plot(results, type = 5)

End(Not run)

plot.StageResults Stage Results Plotting

Description

Plots the conditional power together with the likelihood function.

234 plot.StageResults

Usage

S3 method for class 'StageResults'
plot(
x,
y,
...,
type = 1L,
nPlanned,
allocationRatioPlanned = 1,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
legendTitle = NA_character_,
palette = "Set1",
legendPosition = NA_integer_,
showSource = FALSE,
plotSettings = NULL

)

Arguments

x The stage results at given stage, obtained from getStageResults() or getAnalysisResults().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. Furthermore the following arguments can be defined:

• thetaRange: A range of assumed effect sizes if testing means or a sur-
vival design was specified. Additionally, if testing means was selected, an
assumed standard deviation can be specified (default is 1).

• piTreatmentRange: A range of assumed rates pi1 to calculate the condi-
tional power. Additionally, if a two-sample comparison was selected, pi2
can be specified (default is the value from getAnalysisResults()).

• directionUpper: Specifies the direction of the alternative, only applicable
for one-sided testing; default is TRUE which means that larger values of the
test statistics yield smaller p-values.

• thetaH0: The null hypothesis value, default is 0 for the normal and the
binary case, it is 1 for the survival case. For testing a rate in one sample,
a value thetaH0 in (0,1) has to be specified for defining the null hypothesis
H0: pi = thetaH0.

type The plot type (default = 1). Note that at the moment only one type (the condi-
tional power plot) is available.

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to

plot.StageResults 235

the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

legendTitle The legend title.

palette The palette, default is "Set1".

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

Generic function to plot all kinds of stage results. The conditional power is calculated only if effect
size and sample size is specified.

Value

Returns a ggplot2 object.

Examples

design <- getDesignGroupSequential(
kMax = 4, alpha = 0.025,
informationRates = c(0.2, 0.5, 0.8, 1),

236 plot.SummaryFactory

typeOfDesign = "WT", deltaWT = 0.25
)

dataExample <- getDataset(
n = c(20, 30, 30),
means = c(50, 51, 55),
stDevs = c(130, 140, 120)

)

stageResults <- getStageResults(design, dataExample, thetaH0 = 20)

Not run:
if (require(ggplot2)) plot(stageResults, nPlanned = c(30), thetaRange = c(0, 100))

End(Not run)

plot.SummaryFactory Summary Factory Plotting

Description

Plots a summary factory.

Usage

S3 method for class 'SummaryFactory'
plot(x, y, ..., showSummary = FALSE)

Arguments

x The summary factory object.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

showSummary Show the summary before creating the plot output, default is FALSE.

Details

Generic function to plot all kinds of summary factories.

Value

Returns a ggplot2 object.

plot.TrialDesign 237

plot.TrialDesign Trial Design Plotting

Description

Plots a trial design.

Usage

S3 method for class 'TrialDesign'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
palette = "Set1",
theta = seq(-1, 1, 0.01),
nMax = NA_integer_,
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

S3 method for class 'TrialDesignCharacteristics'
plot(x, y, ...)

Arguments

x The trial design, obtained from
getDesignGroupSequential(),
getDesignInverseNormal() or
getDesignFisher().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 3: creates a ’Stage Levels’ plot
• 4: creates a ’Error Spending’ plot

238 plot.TrialDesign

• 5: creates a ’Power and Early Stopping’ plot

• 6: creates an ’Average Sample Size and Power / Early Stop’ plot

• 7: creates an ’Power’ plot

• 8: creates an ’Early Stopping’ plot

• 9: creates an ’Average Sample Size’ plot

• "all": creates all available plots and returns it as a grid plot or list

palette The palette, default is "Set1".

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

nMax The maximum sample size. Must be a positive integer of length 1.

plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown

• NA: the algorithm tries to find a suitable position

• 0: legend position outside plot

• 1: legend position left top

• 2: legend position left center

• 3: legend position left bottom

• 4: legend position right top

• 5: legend position right center

• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands

• "axes": returns a list with the axes definitions

• "test": all plot commands will be validated with eval(parse()) and re-
turned as character vector (function does not stop if an error occurs)

• "validate": all plot commands will be validated with eval(parse()) and
returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSettings().

plot.TrialDesignPlan 239

Details

Generic function to plot a trial design.

Generic function to plot a trial design.

Note that nMax is not an argument that it passed to ggplot2. Rather, the underlying calculations (e.g.
power for different theta’s or average sample size) are based on calls to function getPowerAndAverageSampleNumber()
which has argument nMax. I.e., nMax is not an argument to ggplot2 but to getPowerAndAverageSampleNumber()
which is called prior to plotting.

Value

Returns a ggplot2 object.

See Also

plot() to compare different designs or design parameters visual.

Examples

Not run:
design <- getDesignInverseNormal(

kMax = 3, alpha = 0.025,
typeOfDesign = "asKD", gammaA = 2,
informationRates = c(0.2, 0.7, 1),
typeBetaSpending = "bsOF"

)
if (require(ggplot2)) {

plot(design) # default: type = 1
}

End(Not run)

plot.TrialDesignPlan Trial Design Plan Plotting

Description

Plots a trial design plan.

Usage

S3 method for class 'TrialDesignPlan'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = ifelse(x$.design$kMax == 1, 5L, 1L),
palette = "Set1",

240 plot.TrialDesignPlan

theta = NA_real_,
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

Arguments

x The trial design plan, obtained from
getSampleSizeMeans(),
getSampleSizeRates(),
getSampleSizeSurvival(),
getSampleSizeCounts(),
getPowerMeans(),
getPowerRates() or
getPowerSurvival() or
getPowerCounts().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 2: creates a ’Boundaries Effect Scale’ plot
• 3: creates a ’Boundaries p Values Scale’ plot
• 4: creates a ’Error Spending’ plot
• 5: creates a ’Sample Size’ or ’Overall Power and Early Stopping’ plot
• 6: creates a ’Number of Events’ or ’Sample Size’ plot
• 7: creates an ’Overall Power’ plot
• 8: creates an ’Overall Early Stopping’ plot
• 9: creates an ’Expected Number of Events’ or ’Expected Sample Size’ plot
• 10: creates a ’Study Duration’ plot
• 11: creates an ’Expected Number of Subjects’ plot
• 12: creates an ’Analysis Times’ plot
• 13: creates a ’Cumulative Distribution Function’ plot
• 14: creates a ’Survival Function’ plot
• "all": creates all available plots and returns it as a grid plot or list

palette The palette, default is "Set1".

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

plot.TrialDesignPlan 241

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

Generic function to plot all kinds of trial design plans.

Value

Returns a ggplot2 object.

Examples

Not run:
if (require(ggplot2)) plot(getSampleSizeMeans())

End(Not run)

242 plot.TrialDesignSet

plot.TrialDesignSet Trial Design Set Plotting

Description

Plots a trial design set.

Usage

S3 method for class 'TrialDesignSet'
plot(
x,
y,
...,
type = 1L,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
palette = "Set1",
theta = seq(-1, 1, 0.02),
nMax = NA_integer_,
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

Arguments

x The trial design set, obtained from getDesignSet().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 3: creates a ’Stage Levels’ plot
• 4: creates a ’Error Spending’ plot
• 5: creates a ’Power and Early Stopping’ plot
• 6: creates an ’Average Sample Size and Power / Early Stop’ plot
• 7: creates an ’Power’ plot
• 8: creates an ’Early Stopping’ plot
• 9: creates an ’Average Sample Size’ plot
• "all": creates all available plots and returns it as a grid plot or list

main The main title.

xlab The x-axis label.

ylab The y-axis label.

plot.TrialDesignSet 243

palette The palette, default is "Set1".

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

nMax The maximum sample size. Must be a positive integer of length 1.
plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

Generic function to plot a trial design set. Is, e.g., useful to compare different designs or design
parameters visual.

Value

Returns a ggplot2 object.

244 PlotSettings

Examples

Not run:
design <- getDesignInverseNormal(

kMax = 3, alpha = 0.025,
typeOfDesign = "asKD", gammaA = 2,
informationRates = c(0.2, 0.7, 1), typeBetaSpending = "bsOF"

)

Create a set of designs based on the master design defined above
and varied parameter 'gammaA'
designSet <- getDesignSet(design = design, gammaA = 4)

if (require(ggplot2)) plot(designSet, type = 1, legendPosition = 6)

End(Not run)

PlotSettings Plot Settings

Description

Class for plot settings.

Details

Collects typical plot settings in an object.

Fields

lineSize The line size.

pointSize The point size.

pointColor The point color, e.g., "red" or "blue".

mainTitleFontSize The main tile font size.

axesTextFontSize The text font size.

legendFontSize The legend font size.

scalingFactor The scaling factor.

Methods

adjustLegendFontSize(adjustingValue) Adjusts the legend font size, e.g., run
adjustLegendFontSize(-2) # makes the font size 2 points smaller

enlargeAxisTicks(p) Enlarges the axis ticks

expandAxesRange(p, x = NA_real_, y = NA_real_) Expands the axes range

hideGridLines(p) Hides the grid lines

setAxesAppearance(p) Sets the font size and face of the axes titles and texts

setColorPalette(p, palette, mode = c("colour", "fill", "all")) Sets the color palette

setLegendBorder(p) Sets the legend border

plotTypes 245

setMainTitle(p, mainTitle, subtitle = NA_character_) Sets the main title

setMarginAroundPlot(p, margin = 0.2) Sets the margin around the plot, e.g., run
setMarginAroundPlot(p, .2) or
setMarginAroundPlot(p, c(.1, .2, .1, .2)

setTheme(p) Sets the theme

plotTypes Get Available Plot Types

Description

Function to identify the available plot types of an object.

Usage

plotTypes(
obj,
output = c("numeric", "caption", "numcap", "capnum"),
numberInCaptionEnabled = FALSE

)

getAvailablePlotTypes(
obj,
output = c("numeric", "caption", "numcap", "capnum"),
numberInCaptionEnabled = FALSE

)

Arguments

obj The object for which the plot types shall be identified, e.g. produced by getDesignGroupSequential()
or getSampleSizeMeans().

output The output type. Can be one of c("numeric", "caption", "numcap", "capnum").
numberInCaptionEnabled

If TRUE, the number will be added to the caption, default is FALSE.

Details

plotTypes and getAvailablePlotTypes() are equivalent, i.e., plotTypes is a short form of
getAvailablePlotTypes().

output:

1. numeric: numeric output

2. caption: caption as character output

3. numcap: list with number and caption

4. capnum: list with caption and number

Value

Returns a list if option is either capnum or numcap or returns a vector that is of character type for
option=caption or of numeric type for option=numeric.

246 PowerAndAverageSampleNumberResult

Examples

design <- getDesignInverseNormal(kMax = 2)
getAvailablePlotTypes(design, "numeric")
plotTypes(design, "caption")
getAvailablePlotTypes(design, "numcap")
plotTypes(design, "capnum")

PowerAndAverageSampleNumberResult

Power and Average Sample Number Result

Description

Class for power and average sample number (ASN) results.

Details

This object cannot be created directly; use getPowerAndAverageSampleNumber() with suitable
arguments to create it.

Fields

nMax The maximum sample size. Is a numeric vector of length 1 containing a whole number.

theta A vector of standardized effect sizes (theta values). Is a numeric vector.

averageSampleNumber The average sample number calculated for each value of theta or nMax, if
the specified maximum sample size would be exceeded. Is a numeric vector.

calculatedPower The calculated power for the given scenario.

overallEarlyStop The overall early stopping probability. Is a numeric vector.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

overallReject The overall rejection probability. Is a numeric vector.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

overallFutility The overall stopping for futility probability. Is a numeric vector.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

print.Dataset 247

print.Dataset Print Dataset Values

Description

print prints its Dataset argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'Dataset'
print(
x,
...,
markdown = FALSE,
output = c("list", "long", "wide", "r", "rComplete")

)

Arguments

x A Dataset object.
... Ensures that all arguments (starting from the "...") are to be named and that a

warning will be displayed if unknown arguments are passed.
markdown If TRUE, the output will be created in Markdown.
output A character defining the output type, default is "list".

Details

Prints the dataset.

print.FieldSet Print Field Set Values

Description

print prints its FieldSet argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'FieldSet'
print(x, ...)

Arguments

x A FieldSet object.
... Ensures that all arguments (starting from the "...") are to be named and that a

warning will be displayed if unknown arguments are passed.

Details

Prints the field set.

248 print.SimulationResults

print.ParameterSet Print Parameter Set Values

Description

print prints its ParameterSet argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'ParameterSet'
print(x, ..., markdown = NA)

Arguments

x The ParameterSet object to print.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

markdown If TRUE, the object x will be printed using markdown syntax; normal representa-
tion will be used otherwise (default is FALSE)

Details

Prints the parameters and results of a parameter set.

print.SimulationResults

Print Simulation Results

Description

print prints its SimulationResults argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'SimulationResults'
print(x, ..., showStatistics = FALSE, markdown = FALSE)

Arguments

x The SimulationResults object to print.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

markdown If TRUE, the object x will be printed using markdown syntax; normal representa-
tion will be used otherwise (default is FALSE)

Details

Prints the parameters and results of an SimulationResults object.

print.SummaryFactory 249

print.SummaryFactory Summary Factory Printing

Description

Prints the result object stored inside a summary factory.

Usage

S3 method for class 'SummaryFactory'
print(x, ..., markdown = NA, sep = "\n-----\n\n")

Arguments

x The summary factory object.
... Optional plot arguments. At the moment xlim and ylim are implemented for

changing x or y axis limits without dropping data observations.
markdown If TRUE, the object x will be printed using markdown syntax; normal representa-

tion will be used otherwise (default is FALSE)
sep The separator line between the summary and the print output.

Details

Generic function to print all kinds of summary factories.

print.TrialDesignCharacteristics

Trial Design Characteristics Printing

Description

Prints the design characteristics object.

Usage

S3 method for class 'TrialDesignCharacteristics'
print(x, ..., markdown = FALSE, showDesign = TRUE)

Arguments

x The trial design characteristics object.
... Optional plot arguments. At the moment xlim and ylim are implemented for

changing x or y axis limits without dropping data observations.
markdown If TRUE, the object x will be printed using markdown syntax; normal representa-

tion will be used otherwise (default is FALSE)
showDesign Show the design print output above the design characteristics, default is TRUE.

Details

Generic function to print all kinds of design characteristics.

250 rawDataTwoArmNormal

printCitation Print Citation

Description

How to cite rpact and R in publications.

Usage

printCitation(inclusiveR = TRUE, language = "en")

Arguments

inclusiveR If TRUE (default) the information on how to cite the base R system in publications
will be added.

language Language code to use for the output, default is "en".

Details

This function shows how to cite rpact and R (inclusiveR = TRUE) in publications.

Examples

printCitation()

rawDataTwoArmNormal Raw Dataset Of A Two Arm Continuous Outcome With Covariates

Description

An artificial dataset that was randomly generated with simulated normal data. The data set has six
variables:

1. Subject id

2. Stage number

3. Group name

4. An example outcome in that we are interested in

5. The first covariate gender

6. The second covariate covariate

Usage

rawDataTwoArmNormal

Format

A data.frame object.

rcmd 251

Details

See the vignette "Two-arm analysis for continuous data with covariates from raw data" to learn how
to

• import raw data from a csv file,

• calculate estimated adjusted (marginal) means (EMMs, least-squares means) for a linear model,
and

• perform two-arm interim analyses with these data.

You can use rawDataTwoArmNormal to reproduce the examples in the vignette.

rcmd Get Object R Code

Description

Returns the R source command of a result object.

Usage

rcmd(
obj,
...,
leadingArguments = NULL,
includeDefaultParameters = FALSE,
stringWrapParagraphWidth = 90,
prefix = "",
postfix = "",
stringWrapPrefix = "",
newArgumentValues = list()

)

getObjectRCode(
obj,
...,
leadingArguments = NULL,
includeDefaultParameters = FALSE,
stringWrapParagraphWidth = 90,
prefix = "",
postfix = "",
stringWrapPrefix = "",
newArgumentValues = list(),
tolerance = 1e-07,
pipeOperator = c("auto", "none", "magrittr", "R"),
output = c("vector", "cat", "test", "markdown", "internal"),
explicitPrint = FALSE

)

252 readDataset

Arguments

obj The result object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

leadingArguments

A character vector with arguments that shall be inserted at the beginning of the
function command, e.g., design = x. Be careful with this option because the
created R command may no longer be valid if used.

includeDefaultParameters

If TRUE, default parameters will be included in all rpact commands; default is
FALSE.

stringWrapParagraphWidth

An integer value defining the number of characters after which a line break shall
be inserted; set to NULL to insert no line breaks.

prefix A character string that shall be added to the beginning of the R command.

postfix A character string that shall be added to the end of the R command.

stringWrapPrefix

A prefix character string that shall be added to each new line, typically some
spaces.

newArgumentValues

A named list with arguments that shall be renewed in the R command, e.g.,
newArgumentValues = list(informationRates = c(0.5, 1)).

tolerance The tolerance for defining a value as default.

pipeOperator The pipe operator to use in the R code, default is "none".

output The output format, default is a character "vector".

explicitPrint Show an explicit print command, default is FALSE.

Details

getObjectRCode() (short: rcmd()) recreates the R commands that result in the specified object
obj. obj must be an instance of class ParameterSet.

Value

A character value or vector will be returned.

readDataset Read Dataset

Description

Reads a data file and returns it as dataset object.

readDataset 253

Usage

readDataset(
file,
...,
header = TRUE,
sep = ",",
quote = "\"",
dec = ".",
fill = TRUE,
comment.char = "",
fileEncoding = "UTF-8"

)

Arguments

file A CSV file (see read.table).

... Further arguments to be passed to read.table.

header A logical value indicating whether the file contains the names of the variables
as its first line.

sep The field separator character. Values on each line of the file are separated by this
character. If sep = "," (the default for readDataset) the separator is a comma.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

dec The character used in the file for decimal points.

fill logical. If TRUE then in case the rows have unequal length, blank fields are
implicitly added.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

fileEncoding character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

readDataset is a wrapper function that uses read.table to read the CSV file into a data frame,
transfers it from long to wide format with reshape and puts the data to getDataset().

Value

Returns a Dataset object. The following generics (R generic functions) are available for this result
object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

254 readDatasets

See Also

• readDatasets() for reading multiple datasets,

• writeDataset() for writing a single dataset,

• writeDatasets() for writing multiple datasets.

Examples

Not run:
dataFileRates <- system.file("extdata",

"dataset_rates.csv",
package = "rpact"

)
if (dataFileRates != "") {

datasetRates <- readDataset(dataFileRates)
datasetRates

}

dataFileMeansMultiArm <- system.file("extdata",
"dataset_means_multi-arm.csv",
package = "rpact"

)
if (dataFileMeansMultiArm != "") {

datasetMeansMultiArm <- readDataset(dataFileMeansMultiArm)
datasetMeansMultiArm

}

dataFileRatesMultiArm <- system.file("extdata",
"dataset_rates_multi-arm.csv",
package = "rpact"

)
if (dataFileRatesMultiArm != "") {

datasetRatesMultiArm <- readDataset(dataFileRatesMultiArm)
datasetRatesMultiArm

}

dataFileSurvivalMultiArm <- system.file("extdata",
"dataset_survival_multi-arm.csv",
package = "rpact"

)
if (dataFileSurvivalMultiArm != "") {

datasetSurvivalMultiArm <- readDataset(dataFileSurvivalMultiArm)
datasetSurvivalMultiArm

}

End(Not run)

readDatasets Read Multiple Datasets

Description

Reads a data file and returns it as a list of dataset objects.

readDatasets 255

Usage

readDatasets(
file,
...,
header = TRUE,
sep = ",",
quote = "\"",
dec = ".",
fill = TRUE,
comment.char = "",
fileEncoding = "UTF-8"

)

Arguments

file A CSV file (see read.table).

... Further arguments to be passed to read.table.

header A logical value indicating whether the file contains the names of the variables
as its first line.

sep The field separator character. Values on each line of the file are separated by this
character. If sep = "," (the default for readDatasets) the separator is a comma.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

dec The character used in the file for decimal points.

fill logical. If TRUE then in case the rows have unequal length, blank fields are
implicitly added.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

fileEncoding character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

Reads a file that was written by writeDatasets() before.

Value

Returns a list of Dataset objects.

See Also

• readDataset() for reading a single dataset,

• writeDatasets() for writing multiple datasets,

• writeDataset() for writing a single dataset.

256 rpact

Examples

dataFile <- system.file("extdata", "datasets_rates.csv", package = "rpact")
if (dataFile != "") {

datasets <- readDatasets(dataFile)
datasets

}

resetLogLevel Reset Log Level

Description

Resets the rpact log level.

Usage

resetLogLevel()

Details

This function resets the log level of the rpact internal log message system to the default value
"PROGRESS".

See Also

• getLogLevel() for getting the current log level,

• setLogLevel() for setting the log level.

Examples

Not run:
reset log level to default value
resetLogLevel()

End(Not run)

rpact rpact - Confirmatory Adaptive Clinical Trial Design and Analysis

Description

rpact (R Package for Adaptive Clinical Trials) is a comprehensive package that enables the design,
simulation, and analysis of confirmatory adaptive group sequential designs. Particularly, the meth-
ods described in the recent monograph by Wassmer and Brannath (published by Springer, 2016)
are implemented. It also comprises advanced methods for sample size calculations for fixed sam-
ple size designs incl., e.g., sample size calculation for survival trials with piecewise exponentially
distributed survival times and staggered patients entry.

setLogLevel 257

Details

rpact includes the classical group sequential designs (incl. user spending function approaches)
where the sample sizes per stage (or the time points of interim analysis) cannot be changed in a
data-driven way. Confirmatory adaptive designs explicitly allow for this under control of the Type I
error rate. They are either based on the combination testing or the conditional rejection probability
(CRP) principle. Both are available, for the former the inverse normal combination test and Fisher’s
combination test can be used.

Specific techniques of the adaptive methodology are also available, e.g., overall confidence in-
tervals, overall p-values, and conditional and predictive power assessments. Simulations can be
performed to assess the design characteristics of a (user-defined) sample size recalculation strategy.
Designs are available for trials with continuous, binary, and survival endpoint.

For more information please visit www.rpact.org. If you are interested in professional services
round about the package or need a comprehensive validation documentation to fulfill regulatory
requirements please visit www.rpact.com.

rpact is developed by

• Gernot Wassmer (<gernot.wassmer@rpact.com>) and

• Friedrich Pahlke (<friedrich.pahlke@rpact.com>).

Author(s)

Gernot Wassmer, Friedrich Pahlke

References

Wassmer, G., Brannath, W. (2016) Group Sequential and Confirmatory Adaptive Designs in Clinical
Trials (Springer Series in Pharmaceutical Statistics; doi:10.1007/9783319325620)

See Also

Useful links:

• https://www.rpact.org

• https://www.rpact.com

• https://github.com/rpact-com/rpact

• https://rpact-com.github.io/rpact/

• Report bugs at https://github.com/rpact-com/rpact/issues

setLogLevel Set Log Level

Description

Sets the rpact log level.

Usage

setLogLevel(
logLevel = c("PROGRESS", "ERROR", "WARN", "INFO", "DEBUG", "TRACE", "DISABLED")

)

https://www.rpact.org
https://www.rpact.com
https://doi.org/10.1007/978-3-319-32562-0
https://www.rpact.org
https://www.rpact.com
https://github.com/rpact-com/rpact
https://rpact-com.github.io/rpact/
https://github.com/rpact-com/rpact/issues

258 setOutputFormat

Arguments

logLevel The new log level to set. Can be one of "PROGRESS", "ERROR", "WARN",
"INFO", "DEBUG", "TRACE", "DISABLED". Default is "PROGRESS".

Details

This function sets the log level of the rpact internal log message system. By default only calcula-
tion progress messages will be shown on the output console, particularly getAnalysisResults()
shows this kind of messages. The output of these messages can be disabled by setting the log level
to "DISABLED".

See Also

• getLogLevel() for getting the current log level,

• resetLogLevel() for resetting the log level to default.

Examples

Not run:
show debug messages
setLogLevel("DEBUG")

disable all log messages
setLogLevel("DISABLED")

End(Not run)

setOutputFormat Set Output Format

Description

With this function the format of the standard outputs of all rpact objects can be changed and set
user defined respectively.

Usage

setOutputFormat(
parameterName = NA_character_,
...,
digits = NA_integer_,
nsmall = NA_integer_,
trimSingleZeros = NA,
futilityProbabilityEnabled = NA,
file = NA_character_,
resetToDefault = FALSE,
roundFunction = NA_character_

)

setOutputFormat 259

Arguments

parameterName The name of the parameter whose output format shall be edited. Leave the
default NA_character_ if the output format of all parameters shall be edited.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

digits How many significant digits are to be used for a numeric value. The default,
NULL, uses getOption("digits"). Allowed values are 0 <= digits <= 20.

nsmall The minimum number of digits to the right of the decimal point in formatting
real numbers in non-scientific formats. Allowed values are 0 <= nsmall <= 20.

trimSingleZeros

If TRUE zero values will be trimmed in the output, e.g., "0.00" will displayed as
"0"

futilityProbabilityEnabled

If TRUE very small value (< 1e-09) will be displayed as "0", default is FALSE.

file An optional file name of an existing text file that contains output format defini-
tions (see Details for more information).

resetToDefault If TRUE all output formats will be reset to default value. Note that other settings
will be executed afterwards if specified, default is FALSE.

roundFunction A character value that specifies the R base round function to use, default is
NA_character_. Allowed values are "ceiling", "floor", "trunc", "round", "sig-
nif", and NA_character_.

Details

Output formats can be written to a text file (see getOutputFormat()). To load your personal
output formats read a formerly saved file at the beginning of your work with rpact, e.g. execute
setOutputFormat(file = "my_rpact_output_formats.txt").

Note that the parameterName must not match exactly, e.g., for p-values the following parameter
names will be recognized amongst others:

1. p value

2. p.values

3. p-value

4. pValue

5. rpact.output.format.p.value

See Also

format for details on the function used internally to format the values.

Other output formats: getOutputFormat()

Examples

show output format of p values
getOutputFormat("p.value")
Not run:
set new p value output format
setOutputFormat("p.value", digits = 5, nsmall = 5)

show sample sizes as smallest integers not less than the not rounded values

260 SimulationResults

setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "ceiling")
getSampleSizeMeans()

show sample sizes as smallest integers not greater than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "floor")
getSampleSizeMeans()

set new sample size output format without round function
setOutputFormat("sample size", digits = 2, nsmall = 2)
getSampleSizeMeans()

reset sample size output format to default
setOutputFormat("sample size")
getSampleSizeMeans()
getOutputFormat("sample size")

End(Not run)

SimulationResults Class for Simulation Results

Description

A class for simulation results.

Details

SimulationResults is the basic class for

• SimulationResultsMeans,

• SimulationResultsRates,

• SimulationResultsSurvival,

• SimulationResultsMultiArmMeans,

• SimulationResultsMultiArmRates,

• SimulationResultsMultiArmSurvival,

• SimulationResultsEnrichmentMeans,

• SimulationResultsEnrichmentRates, and

• SimulationResultsEnrichmentSurvival.

Fields

seed The seed used for random number generation. Is a numeric vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

SimulationResultsEnrichmentMeans 261

SimulationResultsEnrichmentMeans

Class for Simulation Results Enrichment Means

Description

A class for simulation results means in enrichment designs.

Details

Use getSimulationEnrichmentMeans() to create an object of this type.

Fields

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

stDev The standard deviation used for sample size and power calculation. Is a numeric vector of
length 1.

plannedSubjects Determines the number of cumulated (overall) subjects when the interim stages
are planned. For two treatment arms, is the number of subjects for both treatment arms. For
multi-arm designs, refers to the number of subjects per selected active arm. Is a numeric vector
of length kMax containing whole numbers.

minNumberOfSubjectsPerStage Determines the minimum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

maxNumberOfSubjectsPerStage Determines the maximum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

stDevH1 The standard deviation under which the conditional power or sample size recalculation is
performed. Is a numeric vector of length 1.

calcSubjectsFunction An optional function that can be entered to define how sample size is
recalculated. By default, recalculation is performed with conditional power with specified
minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage.

262 SimulationResultsEnrichmentMeans

expectedNumberOfSubjects The expected number of subjects under specified alternative.

populations The number of populations in an enrichment design. Is a numeric vector of length 1
containing a whole number.

effectList The list of subsets, prevalences and effect sizes with columns and number of rows
reflecting the different situations to be considered.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

stratifiedAnalysis For enrichment designs, typically a stratified analysis should be chosen.
When testing means and rates, a non-stratified analysis can be performed on overall data. For
survival data, only a stratified analysis is possible. Is a logical vector of length 1.

adaptations Indicates whether or not an adaptation takes place at interim k. Is a logical vector of
length kMax minus 1.

typeOfSelection The way the treatment arms or populations are selected at interim. Is a character
vector of length 1.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic ("testStatistic")
or effect estimate ("effectEstimate"). Is a character vector of length 1.

successCriterion Defines when the study is stopped for efficacy at interim. "all" stops the
trial if the efficacy criterion has been fulfilled for all selected treatment arms/populations,
"atLeastOne" stops if at least one of the selected treatment arms/populations is shown to be
superior to control at interim. Is a character vector of length 1.

epsilonValue Needs to be specified if typeOfSelection = "epsilon". Is a numeric vector of
length 1.

rValue Needs to be specified if typeOfSelection = "rBest". Is a numeric vector of length 1.

threshold The selection criterion: treatment arm/population is only selected if effectMeasure
exceeds threshold. Either a single numeric value or a numeric vector of length activeArms
referring to a separate threshold condition for each treatment arm.

selectPopulationsFunction An optional function that can be entered to define the way of how
populations are selected.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

selectedPopulations The selected populations in enrichment designs.

numberOfPopulations The number of populations in an enrichment design. Is a numeric matrix.

rejectAtLeastOne The probability to reject at least one of the (multiple) hypotheses. Is a numeric
vector.

rejectedPopulationsPerStage The simulated number of rejected populations per stage.

successPerStage The simulated success probabilities per stage where success is defined by user.
Is a numeric matrix.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

SimulationResultsEnrichmentRates 263

SimulationResultsEnrichmentRates

Class for Simulation Results Enrichment Rates

Description

A class for simulation results rates in enrichment designs.

Details

Use getSimulationEnrichmentRates() to create an object of this type.

Fields

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

plannedSubjects Determines the number of cumulated (overall) subjects when the interim stages
are planned. For two treatment arms, is the number of subjects for both treatment arms. For
multi-arm designs, refers to the number of subjects per selected active arm. Is a numeric vector
of length kMax containing whole numbers.

minNumberOfSubjectsPerStage Determines the minimum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

maxNumberOfSubjectsPerStage Determines the maximum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

calcSubjectsFunction An optional function that can be entered to define how sample size is
recalculated. By default, recalculation is performed with conditional power with specified
minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

264 SimulationResultsEnrichmentRates

populations The number of populations in an enrichment design. Is a numeric vector of length 1
containing a whole number.

effectList The list of subsets, prevalences and effect sizes with columns and number of rows
reflecting the different situations to be considered.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

stratifiedAnalysis For enrichment designs, typically a stratified analysis should be chosen.
When testing means and rates, a non-stratified analysis can be performed on overall data. For
survival data, only a stratified analysis is possible. Is a logical vector of length 1.

adaptations Indicates whether or not an adaptation takes place at interim k. Is a logical vector of
length kMax minus 1.

piTreatmentH1 The assumed probabilities in the active arm under which the sample size recalcu-
lation was performed and the conditional power was calculated.

piControlH1 The assumed probability in the reference group, for which the conditional power was
calculated. Is a numeric vector of length 1 containing a value between 0 and 1.

typeOfSelection The way the treatment arms or populations are selected at interim. Is a character
vector of length 1.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic ("testStatistic")
or effect estimate ("effectEstimate"). Is a character vector of length 1.

successCriterion Defines when the study is stopped for efficacy at interim. "all" stops the
trial if the efficacy criterion has been fulfilled for all selected treatment arms/populations,
"atLeastOne" stops if at least one of the selected treatment arms/populations is shown to be
superior to control at interim. Is a character vector of length 1.

epsilonValue Needs to be specified if typeOfSelection = "epsilon". Is a numeric vector of
length 1.

rValue Needs to be specified if typeOfSelection = "rBest". Is a numeric vector of length 1.

threshold The selection criterion: treatment arm/population is only selected if effectMeasure
exceeds threshold. Either a single numeric value or a numeric vector of length activeArms
referring to a separate threshold condition for each treatment arm.

selectPopulationsFunction An optional function that can be entered to define the way of how
populations are selected.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

selectedPopulations The selected populations in enrichment designs.

numberOfPopulations The number of populations in an enrichment design. Is a numeric matrix.

rejectAtLeastOne The probability to reject at least one of the (multiple) hypotheses. Is a numeric
vector.

rejectedPopulationsPerStage The simulated number of rejected populations per stage.

successPerStage The simulated success probabilities per stage where success is defined by user.
Is a numeric matrix.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

SimulationResultsEnrichmentSurvival 265

SimulationResultsEnrichmentSurvival

Class for Simulation Results Enrichment Survival

Description

A class for simulation results survival in enrichment designs.

Details

Use getSimulationEnrichmentSurvival() to create an object of this type.

Fields

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

plannedSubjects Determines the number of cumulated (overall) subjects when the interim stages
are planned. For two treatment arms, is the number of subjects for both treatment arms. For
multi-arm designs, refers to the number of subjects per selected active arm. Is a numeric vector
of length kMax containing whole numbers.

minNumberOfSubjectsPerStage Determines the minimum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

maxNumberOfSubjectsPerStage Determines the maximum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

calcEventsFunction An optional function that can be entered to define how event size is re-
calculated. By default, recalculation is performed with conditional power with specified
minNumberOfEventsPerStage and maxNumberOfEventsPerStage.

266 SimulationResultsEnrichmentSurvival

expectedNumberOfEvents The expected number of events under specified alternative. Is a nu-
meric vector.

populations The number of populations in an enrichment design. Is a numeric vector of length 1
containing a whole number.

effectList The list of subsets, prevalences and effect sizes with columns and number of rows
reflecting the different situations to be considered.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

stratifiedAnalysis For enrichment designs, typically a stratified analysis should be chosen.
When testing means and rates, a non-stratified analysis can be performed on overall data. For
survival data, only a stratified analysis is possible. Is a logical vector of length 1.

adaptations Indicates whether or not an adaptation takes place at interim k. Is a logical vector of
length kMax minus 1.

typeOfSelection The way the treatment arms or populations are selected at interim. Is a character
vector of length 1.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic ("testStatistic")
or effect estimate ("effectEstimate"). Is a character vector of length 1.

successCriterion Defines when the study is stopped for efficacy at interim. "all" stops the
trial if the efficacy criterion has been fulfilled for all selected treatment arms/populations,
"atLeastOne" stops if at least one of the selected treatment arms/populations is shown to be
superior to control at interim. Is a character vector of length 1.

epsilonValue Needs to be specified if typeOfSelection = "epsilon". Is a numeric vector of
length 1.

rValue Needs to be specified if typeOfSelection = "rBest". Is a numeric vector of length 1.

threshold The selection criterion: treatment arm/population is only selected if effectMeasure
exceeds threshold. Either a single numeric value or a numeric vector of length activeArms
referring to a separate threshold condition for each treatment arm.

selectPopulationsFunction An optional function that can be entered to define the way of how
populations are selected.

correlationComputation If "alternative", a correlation matrix according to Deng et al. (Bio-
metrics, 2019) accounting for the respective alternative is used for simulating log-rank statis-
tics in the many-to-one design. If "null", a constant correlation matrix valid under the null
hypothesis is used.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

selectedPopulations The selected populations in enrichment designs.

numberOfPopulations The number of populations in an enrichment design. Is a numeric matrix.

rejectAtLeastOne The probability to reject at least one of the (multiple) hypotheses. Is a numeric
vector.

rejectedPopulationsPerStage The simulated number of rejected populations per stage.

successPerStage The simulated success probabilities per stage where success is defined by user.
Is a numeric matrix.

eventsPerStage The number of events per stage. Is a numeric matrix.

singleNumberOfEventsPerStage In simulation results data set: the number of events per stage
that is used for the analysis.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

SimulationResultsMeans 267

SimulationResultsMeans

Class for Simulation Results Means

Description

A class for simulation results means.

Details

Use getSimulationMeans() to create an object of this type.

SimulationResultsMeans is the basic class for

• SimulationResultsMeans,

• SimulationResultsMultiArmMeans, and

• SimulationResultsEnrichmentMeans.

Fields

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

stDev The standard deviation used for sample size and power calculation. Is a numeric vector of
length 1.

plannedSubjects Determines the number of cumulated (overall) subjects when the interim stages
are planned. For two treatment arms, is the number of subjects for both treatment arms. For
multi-arm designs, refers to the number of subjects per selected active arm. Is a numeric vector
of length kMax containing whole numbers.

minNumberOfSubjectsPerStage Determines the minimum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

maxNumberOfSubjectsPerStage Determines the maximum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

268 SimulationResultsMultiArmMeans

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

stDevH1 The standard deviation under which the conditional power or sample size recalculation is
performed. Is a numeric vector of length 1.

calcSubjectsFunction An optional function that can be entered to define how sample size is
recalculated. By default, recalculation is performed with conditional power with specified
minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

meanRatio Specifies if the sample size for one-sided testing of H0: mu1/mu2 = thetaH0 has been
calculated. Is a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

alternative The alternative hypothesis value(s) for testing means. Is a numeric vector.

groups The group numbers. Is a numeric vector.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

effect The effect for randomly creating normally distributed responses. Is a numeric vector of
length kMax.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

overallReject The overall rejection probability. Is a numeric vector.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

SimulationResultsMultiArmMeans

Class for Simulation Results Multi-Arm Means

Description

A class for simulation results means in multi-arm designs.

Details

Use getSimulationMultiArmMeans() to create an object of this type.

SimulationResultsMultiArmMeans 269

Fields

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

stDev The standard deviation used for sample size and power calculation. Is a numeric vector of
length 1.

plannedSubjects Determines the number of cumulated (overall) subjects when the interim stages
are planned. For two treatment arms, is the number of subjects for both treatment arms. For
multi-arm designs, refers to the number of subjects per selected active arm. Is a numeric vector
of length kMax containing whole numbers.

minNumberOfSubjectsPerStage Determines the minimum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

maxNumberOfSubjectsPerStage Determines the maximum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

stDevH1 The standard deviation under which the conditional power or sample size recalculation is
performed. Is a numeric vector of length 1.

calcSubjectsFunction An optional function that can be entered to define how sample size is
recalculated. By default, recalculation is performed with conditional power with specified
minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

activeArms The number of active treatment arms to be compared with control. Is a numeric vector
of length 1 containing a whole number.

effectMatrix The matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. Is a character
vector of length 1.

muMaxVector The range of effect sizes for the treatment group with highest response for "linear"
and "sigmoidEmax" model. Is a numeric vector.

gED50 The ED50 of the sigmoid Emax model. Only necessary if typeOfShape = "sigmoidEmax"
has been specified. Is a numeric vector of length 1.

270 SimulationResultsMultiArmRates

slope The slope of the sigmoid Emax model, if typeOfShape = "sigmoidEmax" Is a numeric
vector of length 1.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

adaptations Indicates whether or not an adaptation takes place at interim k. Is a logical vector of
length kMax minus 1.

typeOfSelection The way the treatment arms or populations are selected at interim. Is a character
vector of length 1.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic ("testStatistic")
or effect estimate ("effectEstimate"). Is a character vector of length 1.

successCriterion Defines when the study is stopped for efficacy at interim. "all" stops the
trial if the efficacy criterion has been fulfilled for all selected treatment arms/populations,
"atLeastOne" stops if at least one of the selected treatment arms/populations is shown to be
superior to control at interim. Is a character vector of length 1.

epsilonValue Needs to be specified if typeOfSelection = "epsilon". Is a numeric vector of
length 1.

rValue Needs to be specified if typeOfSelection = "rBest". Is a numeric vector of length 1.

threshold The selection criterion: treatment arm/population is only selected if effectMeasure
exceeds threshold. Either a single numeric value or a numeric vector of length activeArms
referring to a separate threshold condition for each treatment arm.

selectArmsFunction An optional function that can be entered to define how treatment arms are
selected.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

selectedArms The selected arms in multi-armed designs.

numberOfActiveArms The number of active arms in a multi-armed design. Is a numeric matrix.

rejectAtLeastOne The probability to reject at least one of the (multiple) hypotheses. Is a numeric
vector.

rejectedArmsPerStage The simulated number of rejected arms per stage.

successPerStage The simulated success probabilities per stage where success is defined by user.
Is a numeric matrix.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

SimulationResultsMultiArmRates

Class for Simulation Results Multi-Arm Rates

Description

A class for simulation results rates in multi-arm designs.

Details

Use getSimulationMultiArmRates() to create an object of this type.

SimulationResultsMultiArmRates 271

Fields

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

plannedSubjects Determines the number of cumulated (overall) subjects when the interim stages
are planned. For two treatment arms, is the number of subjects for both treatment arms. For
multi-arm designs, refers to the number of subjects per selected active arm. Is a numeric vector
of length kMax containing whole numbers.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

calcSubjectsFunction An optional function that can be entered to define how sample size is
recalculated. By default, recalculation is performed with conditional power with specified
minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

activeArms The number of active treatment arms to be compared with control. Is a numeric vector
of length 1 containing a whole number.

effectMatrix The matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. Is a character
vector of length 1.

piMaxVector The range of assumed probabilities for the treatment group with highest response for
"linear" and "sigmoidEmax" model.

piControl The assumed probability in the control arm for simulation and under which the sample
size recalculation is performed. Is a numeric vector of length 1 containing a value between 0
and 1.

piH1 The assumed probability in the active treatment arm(s) under which the sample size recalcu-
lation is performed. Is a numeric vector of length 1 containing a value between 0 and 1.

piControlH1 The assumed probability in the reference group, for which the conditional power was
calculated. Is a numeric vector of length 1 containing a value between 0 and 1.

gED50 The ED50 of the sigmoid Emax model. Only necessary if typeOfShape = "sigmoidEmax"
has been specified. Is a numeric vector of length 1.

slope The slope of the sigmoid Emax model, if typeOfShape = "sigmoidEmax" Is a numeric
vector of length 1.

272 SimulationResultsMultiArmSurvival

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

adaptations Indicates whether or not an adaptation takes place at interim k. Is a logical vector of
length kMax minus 1.

typeOfSelection The way the treatment arms or populations are selected at interim. Is a character
vector of length 1.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic ("testStatistic")
or effect estimate ("effectEstimate"). Is a character vector of length 1.

successCriterion Defines when the study is stopped for efficacy at interim. "all" stops the
trial if the efficacy criterion has been fulfilled for all selected treatment arms/populations,
"atLeastOne" stops if at least one of the selected treatment arms/populations is shown to be
superior to control at interim. Is a character vector of length 1.

epsilonValue Needs to be specified if typeOfSelection = "epsilon". Is a numeric vector of
length 1.

rValue Needs to be specified if typeOfSelection = "rBest". Is a numeric vector of length 1.

threshold The selection criterion: treatment arm/population is only selected if effectMeasure
exceeds threshold. Either a single numeric value or a numeric vector of length activeArms
referring to a separate threshold condition for each treatment arm.

selectArmsFunction An optional function that can be entered to define how treatment arms are
selected.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

selectedArms The selected arms in multi-armed designs.

numberOfActiveArms The number of active arms in a multi-armed design. Is a numeric matrix.

rejectAtLeastOne The probability to reject at least one of the (multiple) hypotheses. Is a numeric
vector.

rejectedArmsPerStage The simulated number of rejected arms per stage.

successPerStage The simulated success probabilities per stage where success is defined by user.
Is a numeric matrix.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

SimulationResultsMultiArmSurvival

Class for Simulation Results Multi-Arm Survival

Description

A class for simulation results survival in multi-arm designs.

Details

Use getSimulationMultiArmSurvival() to create an object of this type.

SimulationResultsMultiArmSurvival 273

Fields

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

plannedEvents Determines the number of cumulated (overall) events in survival designs when the
interim stages are planned. For two treatment arms, is the number of events for both treatment
arms. For multi-arm designs, refers to the overall number of events for the selected arms plus
control. Is a numeric vector of length kMax containing whole numbers.

minNumberOfEventsPerStage Determines the minimum number of events per stage for data-
driven sample size recalculation. Is a numeric vector of length kMax containing whole num-
bers.

maxNumberOfEventsPerStage Determines the maximum number of events per stage for data-
driven sample size recalculation. Is a numeric vector of length kMax containing whole num-
bers.

expectedNumberOfEvents The expected number of events under specified alternative. Is a nu-
meric vector.

activeArms The number of active treatment arms to be compared with control. Is a numeric vector
of length 1 containing a whole number.

effectMatrix The matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. Is a character
vector of length 1.

omegaMaxVector The range of hazard ratios with highest response for "linear" and "sigmoidEmax"
model. Is a numeric vector.

gED50 The ED50 of the sigmoid Emax model. Only necessary if typeOfShape = "sigmoidEmax"
has been specified. Is a numeric vector of length 1.

slope The slope of the sigmoid Emax model, if typeOfShape = "sigmoidEmax" Is a numeric
vector of length 1.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

adaptations Indicates whether or not an adaptation takes place at interim k. Is a logical vector of
length kMax minus 1.

274 SimulationResultsRates

epsilonValue Needs to be specified if typeOfSelection = "epsilon". Is a numeric vector of
length 1.

rValue Needs to be specified if typeOfSelection = "rBest". Is a numeric vector of length 1.

threshold The selection criterion: treatment arm/population is only selected if effectMeasure
exceeds threshold. Either a single numeric value or a numeric vector of length activeArms
referring to a separate threshold condition for each treatment arm.

selectArmsFunction An optional function that can be entered to define how treatment arms are
selected.

correlationComputation If "alternative", a correlation matrix according to Deng et al. (Bio-
metrics, 2019) accounting for the respective alternative is used for simulating log-rank statis-
tics in the many-to-one design. If "null", a constant correlation matrix valid under the null
hypothesis is used.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

selectedArms The selected arms in multi-armed designs.

numberOfActiveArms The number of active arms in a multi-armed design. Is a numeric matrix.

rejectAtLeastOne The probability to reject at least one of the (multiple) hypotheses. Is a numeric
vector.

rejectedArmsPerStage The simulated number of rejected arms per stage.

successPerStage The simulated success probabilities per stage where success is defined by user.
Is a numeric matrix.

eventsPerStage The number of events per stage. Is a numeric matrix.

singleNumberOfEventsPerStage In simulation results data set: the number of events per stage
that is used for the analysis.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

SimulationResultsRates

Class for Simulation Results Rates

Description

A class for simulation results rates.

Details

Use getSimulationRates() to create an object of this type.

SimulationResultsRates is the basic class for

• SimulationResultsRates,

• SimulationResultsMultiArmRates, and

• SimulationResultsEnrichmentRates.

SimulationResultsRates 275

Fields

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

plannedSubjects Determines the number of cumulated (overall) subjects when the interim stages
are planned. For two treatment arms, is the number of subjects for both treatment arms. For
multi-arm designs, refers to the number of subjects per selected active arm. Is a numeric vector
of length kMax containing whole numbers.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

calcSubjectsFunction An optional function that can be entered to define how sample size is
recalculated. By default, recalculation is performed with conditional power with specified
minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

riskRatio Specifies if the sample size for one-sided testing of H0: pi1 / pi2 = thetaH0 has been
calculated. Is a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

groups The group numbers. Is a numeric vector.

pi1H1 The assumed probability in the active treatment group for two-group designs, or the assumed
probability for a one treatment group design, for which the conditional power was calculated.
Is a numeric vector of length 1 containing a value between 0 and 1.

pi2H1 The assumed probability in the reference group for two-group designs, for which the condi-
tional power was calculated. Is a numeric vector of length 1 containing a value between 0 and
1.

effect The effect for randomly creating normally distributed responses. Is a numeric vector of
length kMax.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

276 SimulationResultsSurvival

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

overallReject The overall rejection probability. Is a numeric vector.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

SimulationResultsSurvival

Class for Simulation Results Survival

Description

A class for simulation results survival.

Details

Use getSimulationSurvival() to create an object of this type.

SimulationResultsSurvival is the basic class for

• SimulationResultsSurvival,

• SimulationResultsMultiArmSurvival, and

• SimulationResultsEnrichmentSurvival.

Fields

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

plannedEvents Determines the number of cumulated (overall) events in survival designs when the
interim stages are planned. For two treatment arms, is the number of events for both treatment
arms. For multi-arm designs, refers to the overall number of events for the selected arms plus
control. Is a numeric vector of length kMax containing whole numbers.

SimulationResultsSurvival 277

minNumberOfEventsPerStage Determines the minimum number of events per stage for data-
driven sample size recalculation. Is a numeric vector of length kMax containing whole num-
bers.

maxNumberOfEventsPerStage Determines the maximum number of events per stage for data-
driven sample size recalculation. Is a numeric vector of length kMax containing whole num-
bers.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

calcEventsFunction An optional function that can be entered to define how event size is re-
calculated. By default, recalculation is performed with conditional power with specified
minNumberOfEventsPerStage and maxNumberOfEventsPerStage.

expectedNumberOfEvents The expected number of events under specified alternative. Is a nu-
meric vector.

pi1 The assumed event rate in the treatment group. Is a numeric vector of length kMax containing
values between 0 and 1.

pi2 The assumed event rate in the control group. Is a numeric vector of length 1 containing a value
between 0 and 1.

median1 The assumed median survival time in the treatment group. Is a numeric vector.

median2 The assumed median survival time in the reference group. Is a numeric vector of length
1.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.

accrualIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

dropoutRate1 The assumed drop-out rate in the treatment group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutRate2 The assumed drop-out rate in the control group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutTime The assumed time for drop-out rates in the control and treatment group. Is a numeric
vector of length 1.

eventTime The assumed time under which the event rates are calculated. Is a numeric vector of
length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

allocation1 The number of subjects to be assigned to treatment 1 in subsequent order. Is a
numeric vector of length 1 containing a whole number.

allocation2 The number of subjects to be assigned to treatment 2 in subsequent order. Is a
numeric vector of length 1 containing a whole number.

kappa The shape of the Weibull distribution if kappa!=1. Is a numeric vector of length 1.

piecewiseSurvivalTime The time intervals for the piecewise definition of the exponential sur-
vival time cumulative distribution function. Is a numeric vector.

lambda1 The assumed hazard rate in the treatment group. Is a numeric vector of length kMax.

lambda2 The assumed hazard rate in the reference group. Is a numeric vector of length 1.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

hazardRatio The hazard ratios under consideration. Is a numeric vector of length kMax.

studyDuration The study duration for specified effect size. Is a positive numeric vector.

278 StageResults

eventsNotAchieved The simulated number of cases how often the number of events was not
reached. Is a numeric matrix.

numberOfSubjects In simulation results data set: The number of subjects under consideration
when the interim analysis takes place.

numberOfSubjects1 In simulation results data set: The number of subjects under consideration in
treatment arm 1 when the interim analysis takes place.

numberOfSubjects2 In simulation results data set: The number of subjects under consideration in
treatment arm 2 when the interim analysis takes place.

eventsPerStage The number of events per stage. Is a numeric matrix.

overallEventsPerStage The cumulative events over stages. Is a numeric matrix.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

overallReject The overall rejection probability. Is a numeric vector.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

StageResults Basic Stage Results

Description

Basic class for stage results.

Details

StageResults is the basic class for

• StageResultsMeans,

• StageResultsRates,

• StageResultsSurvival,

• StageResultsMultiArmMeans,

• StageResultsMultiArmRates,

• StageResultsMultiArmSurvival,

• StageResultsEnrichmentMeans,

• StageResultsEnrichmentRates, and

• StageResultsEnrichmentSurvival.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

StageResultsEnrichmentMeans 279

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

StageResultsEnrichmentMeans

Stage Results Enrichment Means

Description

Class for stage results of enrichment means data

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of enrichment means.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

direction Specifies the direction of the alternative, is either "upper" or "lower". Only applicable
for one-sided testing.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled", "pairwisePooled", "notPooled". Available options for enrichment
designs: "pooled", "pooledFromFull", "notPooled".

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

overallTestStatistics The overall, i.e., cumulated test statistics. Is a numeric vector of length
kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

overallPValues The overall, i.e., cumulated p-values. Is a numeric vector of length kMax con-
taining values between 0 and 1.

280 StageResultsEnrichmentRates

overallStDevs The overall, i.e., cumulative standard deviations. Is a numeric vector of length
number of stages times number of groups.

overallPooledStDevs The overall pooled standard deviations. Is a numeric matrix.

separatePValues The p-values from the separate stages. Is a numeric matrix.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

singleStepAdjustedPValues The adjusted p-value for testing multiple hypotheses per stage of
the trial.

stratifiedAnalysis For enrichment designs, typically a stratified analysis should be chosen.
When testing means and rates, a non-stratified analysis can be performed on overall data. For
survival data, only a stratified analysis is possible. Is a logical vector of length 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

StageResultsEnrichmentRates

Stage Results Enrichment Rates

Description

Class for stage results of enrichment rates data.

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of enrichment rates.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

StageResultsEnrichmentSurvival 281

StageResultsEnrichmentSurvival

Stage Results Enrichment Survival

Description

Class for stage results of enrichment survival data.

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of enrichment survival.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

StageResultsMeans Stage Results of Means

Description

Class for stage results of means.

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of means.

282 StageResultsMultiArmMeans

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

overallTestStatistics The overall, i.e., cumulated test statistics. Is a numeric vector of length
kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

overallPValues The overall, i.e., cumulated p-values. Is a numeric vector of length kMax con-
taining values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

direction Specifies the direction of the alternative, is either "upper" or "lower". Only applicable
for one-sided testing.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

equalVariances Describes if the variances in two treatment groups are assumed to be the same.
Is a logical vector of length 1.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

... Names of dataInput.

StageResultsMultiArmMeans

Stage Results Multi Arm Means

Description

Class for stage results of multi arm means data

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of multi arm means.

StageResultsMultiArmMeans 283

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

overallTestStatistics The overall, i.e., cumulated test statistics. Is a numeric vector of length
kMax.

overallStDevs The overall, i.e., cumulative standard deviations. Is a numeric vector of length
number of stages times number of groups.

overallPooledStDevs The overall pooled standard deviations. Is a numeric matrix.

overallPValues The overall, i.e., cumulated p-values. Is a numeric vector of length kMax con-
taining values between 0 and 1.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

separatePValues The p-values from the separate stages. Is a numeric matrix.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

singleStepAdjustedPValues The adjusted p-value for testing multiple hypotheses per stage of
the trial.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled", "pairwisePooled", "notPooled". Available options for enrichment
designs: "pooled", "pooledFromFull", "notPooled".

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

284 StageResultsMultiArmRates

StageResultsMultiArmRates

Stage Results Multi Arm Rates

Description

Class for stage results of multi arm rates data

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of multi arm rates.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

overallTestStatistics The overall, i.e., cumulated test statistics. Is a numeric vector of length
kMax.

overallPValues The overall, i.e., cumulated p-values. Is a numeric vector of length kMax con-
taining values between 0 and 1.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

separatePValues The p-values from the separate stages. Is a numeric matrix.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

singleStepAdjustedPValues The adjusted p-value for testing multiple hypotheses per stage of
the trial.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

StageResultsMultiArmSurvival 285

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

StageResultsMultiArmSurvival

Stage Results Multi Arm Survival

Description

Class for stage results of multi arm survival data

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of multi arm survival.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

overallTestStatistics The overall, i.e., cumulated test statistics. Is a numeric vector of length
kMax.

overallPValues The overall, i.e., cumulated p-values. Is a numeric vector of length kMax con-
taining values between 0 and 1.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

separatePValues The p-values from the separate stages. Is a numeric matrix.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

singleStepAdjustedPValues The adjusted p-value for testing multiple hypotheses per stage of
the trial.

286 StageResultsRates

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

StageResultsRates Stage Results of Rates

Description

Class for stage results of rates.

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of rates.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

overallTestStatistics The overall, i.e., cumulated test statistics. Is a numeric vector of length
kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

overallPValues The overall, i.e., cumulated p-values. Is a numeric vector of length kMax con-
taining values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

direction Specifies the direction of the alternative, is either "upper" or "lower". Only applicable
for one-sided testing.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

... Names of dataInput.

StageResultsSurvival 287

StageResultsSurvival Stage Results of Survival Data

Description

Class for stage results survival data.

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of survival data.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

overallTestStatistics The overall, i.e., cumulated test statistics. Is a numeric vector of length
kMax.

separatePValues The p-values from the separate stages. Is a numeric matrix.

singleStepAdjustedPValues The adjusted p-value for testing multiple hypotheses per stage of
the trial.

overallPValues The overall, i.e., cumulated p-values. Is a numeric vector of length kMax con-
taining values between 0 and 1.

direction Specifies the direction of the alternative, is either "upper" or "lower". Only applicable
for one-sided testing.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

... Names of dataInput.

288 summary.AnalysisResults

summary.AnalysisResults

Analysis Results Summary

Description

Displays a summary of AnalysisResults object.

Usage

S3 method for class 'AnalysisResults'
summary(object, ..., type = 1, digits = NA_integer_)

Arguments

object An AnalysisResults object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

digits Defines how many digits are to be used for numeric values. Must be a positive
integer of length 1.

Details

Summarizes the parameters and results of an analysis results object.

Value

Returns a SummaryFactory object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object

Summary options

The following options can be set globally:

1. rpact.summary.output.size: one of c("small", "medium", "large"); defines how many
details will be included into the summary; default is "large", i.e., all available details are
displayed.

2. rpact.summary.justify: one of c("right", "left", "centre"); shall the values be right-
justified (the default), left-justified or centered.

3. rpact.summary.width: defines the maximum number of characters to be used per line (de-
fault is 83).

4. rpact.summary.intervalFormat: defines how intervals will be displayed in the summary,
default is "[%s; %s]".

5. rpact.summary.digits: defines how many digits are to be used for numeric values (default
is 3).

6. rpact.summary.digits.probs: defines how many digits are to be used for numeric values
(default is one more than value of rpact.summary.digits, i.e., 4).

summary.Dataset 289

7. rpact.summary.trim.zeroes: if TRUE (default) zeroes will always displayed as "0", e.g.
"0.000" will become "0".

Example: options("rpact.summary.intervalFormat" = "%s - %s")

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

summary.Dataset Dataset Summary

Description

Displays a summary of Dataset object.

Usage

S3 method for class 'Dataset'
summary(object, ..., type = 1, digits = NA_integer_)

Arguments

object A Dataset object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

digits Defines how many digits are to be used for numeric values. Must be a positive
integer of length 1.

Details

Summarizes the parameters and results of a dataset.

Value

Returns a SummaryFactory object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object

290 summary.ParameterSet

Summary options

The following options can be set globally:

1. rpact.summary.output.size: one of c("small", "medium", "large"); defines how many
details will be included into the summary; default is "large", i.e., all available details are
displayed.

2. rpact.summary.justify: one of c("right", "left", "centre"); shall the values be right-
justified (the default), left-justified or centered.

3. rpact.summary.width: defines the maximum number of characters to be used per line (de-
fault is 83).

4. rpact.summary.intervalFormat: defines how intervals will be displayed in the summary,
default is "[%s; %s]".

5. rpact.summary.digits: defines how many digits are to be used for numeric values (default
is 3).

6. rpact.summary.digits.probs: defines how many digits are to be used for numeric values
(default is one more than value of rpact.summary.digits, i.e., 4).

7. rpact.summary.trim.zeroes: if TRUE (default) zeroes will always displayed as "0", e.g.
"0.000" will become "0".

Example: options("rpact.summary.intervalFormat" = "%s - %s")

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

summary.ParameterSet Parameter Set Summary

Description

Displays a summary of ParameterSet object.

Usage

S3 method for class 'ParameterSet'
summary(
object,
...,
type = 1,
digits = NA_integer_,
output = c("all", "title", "overview", "body"),
printObject = FALSE,
sep = "\n-----\n\n"

)

summary.ParameterSet 291

Arguments

object A ParameterSet object.
... Ensures that all arguments (starting from the "...") are to be named and that a

warning will be displayed if unknown arguments are passed.
digits Defines how many digits are to be used for numeric values. Must be a positive

integer of length 1.
output The output parts, default is "all".
printObject Show also the print output after the summary, default is FALSE.
sep The separator line between the summary and the optional print output.

Details

Summarizes the parameters and results of a parameter set.

Value

Returns a SummaryFactory object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,
• print() to print the object

Summary options

The following options can be set globally:

1. rpact.summary.output.size: one of c("small", "medium", "large"); defines how many
details will be included into the summary; default is "large", i.e., all available details are
displayed.

2. rpact.summary.justify: one of c("right", "left", "centre"); shall the values be right-
justified (the default), left-justified or centered.

3. rpact.summary.width: defines the maximum number of characters to be used per line (de-
fault is 83).

4. rpact.summary.intervalFormat: defines how intervals will be displayed in the summary,
default is "[%s; %s]".

5. rpact.summary.digits: defines how many digits are to be used for numeric values (default
is 3).

6. rpact.summary.digits.probs: defines how many digits are to be used for numeric values
(default is one more than value of rpact.summary.digits, i.e., 4).

7. rpact.summary.trim.zeroes: if TRUE (default) zeroes will always displayed as "0", e.g.
"0.000" will become "0".

Example: options("rpact.summary.intervalFormat" = "%s - %s")

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

292 summary.TrialDesignSet

summary.TrialDesignSet

Trial Design Set Summary

Description

Displays a summary of ParameterSet object.

Usage

S3 method for class 'TrialDesignSet'
summary(object, ..., type = 1, digits = NA_integer_)

Arguments

object A ParameterSet object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

digits Defines how many digits are to be used for numeric values. Must be a positive
integer of length 1.

Details

Summarizes the trial designs.

Value

Returns a SummaryFactory object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object

Summary options

The following options can be set globally:

1. rpact.summary.output.size: one of c("small", "medium", "large"); defines how many
details will be included into the summary; default is "large", i.e., all available details are
displayed.

2. rpact.summary.justify: one of c("right", "left", "centre"); shall the values be right-
justified (the default), left-justified or centered.

3. rpact.summary.width: defines the maximum number of characters to be used per line (de-
fault is 83).

4. rpact.summary.intervalFormat: defines how intervals will be displayed in the summary,
default is "[%s; %s]".

5. rpact.summary.digits: defines how many digits are to be used for numeric values (default
is 3).

6. rpact.summary.digits.probs: defines how many digits are to be used for numeric values
(default is one more than value of rpact.summary.digits, i.e., 4).

SummaryFactory 293

7. rpact.summary.trim.zeroes: if TRUE (default) zeroes will always displayed as "0", e.g.
"0.000" will become "0".

Example: options("rpact.summary.intervalFormat" = "%s - %s")

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

SummaryFactory Summary Factory

Description

Basic class for summaries

t,FieldSet-method Field Set Transpose

Description

Given a FieldSet x, t returns the transpose of x.

Usage

S4 method for signature 'FieldSet'
t(x)

Arguments

x A FieldSet.

Details

Implementation of the base R generic function t

294 testPackage

testPackage Test Package

Description

This function allows the installed package rpact to be tested.

Usage

testPackage(
outDir = ".",
...,
completeUnitTestSetEnabled = TRUE,
types = "tests",
connection = list(token = NULL, secret = NULL)

)

Arguments

outDir The output directory where all test results shall be saved. By default the current
working directory is used.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

completeUnitTestSetEnabled

If TRUE (default) all existing unit tests will be executed; a subset of all unit tests
will be used otherwise.

types The type(s) of tests to be done. Can be one or more of c("tests", "examples",
"vignettes"), default is "tests" only.

connection A list where owners of the rpact validation documentation can enter a token
and a secret to get full access to all unit tests, e.g., to fulfill regulatory require-
ments (see www.rpact.com for more information).

Details

This function creates the subdirectory rpact-tests in the specified output directory and copies all
unit test files of the package to this newly created directory. Then the function runs all tests (or
a subset of all tests if completeUnitTestSetEnabled is FALSE) using testInstalledPackage.
The test results will be saved to the text file testthat.Rout that can be found in the subdirectory
rpact-tests.

Value

The value of completeUnitTestSetEnabled will be returned invisible.

Examples

Not run:
testPackage()

End(Not run)

https://www.rpact.com

test_plan_section 295

test_plan_section Test Plan Section

Description

The section title or description will be used in the formal validation documentation. For more
information visit https://www.rpact.com

Usage

test_plan_section(section)

Arguments

section The section title or description.

TrialDesign Basic Trial Design

Description

Basic class for trial designs.

Details

TrialDesign is the basic class for

• TrialDesignFisher,

• TrialDesignGroupSequential,

• TrialDesignInverseNormal, and

• TrialDesignConditionalDunnett.

Fields

kMax The maximum number of stages K. Is a numeric vector of length 1 containing a whole number.

alpha The significance level alpha, default is 0.025. Is a numeric vector of length 1 containing a
value between 0 and 1.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

userAlphaSpending The user defined alpha spending. Contains the cumulative alpha-spending
(type I error rate) up to each interim stage. Is a numeric vector of length kMax containing
values between 0 and 1.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax.

stageLevels The adjusted significance levels to reach significance in a group sequential design.
Is a numeric vector of length kMax containing values between 0 and 1.

https://www.rpact.com

296 TrialDesignCharacteristics

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector of length kMax contain-
ing values between 0 and 1.

bindingFutility If TRUE, the calculation of the critical values is affected by the futility bounds
and the futility threshold is binding in the sense that the study must be stopped if the futility
condition was reached (default is FALSE) Is a logical vector of length 1.

tolerance The numerical tolerance, default is 1e-06. Is a numeric vector of length 1.

TrialDesignCharacteristics

Trial Design Characteristics

Description

Class for trial design characteristics.

Details

TrialDesignCharacteristics contains all fields required to collect the characteristics of a de-
sign. This object should not be created directly; use getDesignCharacteristics with suitable
arguments to create it.

Fields

nFixed The sample size in a fixed (one-stage) design. Is a positive numeric vector.

shift The shift value for group sequential test characteristics. Is a numeric vector of length 1.

inflationFactor The relative increase of maximum sample size in a group sequential design as
compared to the fixed sample size case. Is a positive numeric vector of length 1.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

information The information over stages needed to achieve power of the specified design. Is a
numeric vector of length kMax.

power The one-sided power at each stage of the trial. Is a numeric vector of length kMax containing
values between 0 and 1.

rejectionProbabilities The rejection probabilities over treatments arms or populations and
stages. Is a numeric vector.

futilityProbabilities The overall probabilities of stopping the trial for futility. Is a numeric
vector of length kMax minus 1 containing values between 0 and 1.

averageSampleNumber1 The expected sample size under H1. Is a positive numeric vector of length
1.

averageSampleNumber01 The expected sample size for a value between H0 and H1. Is a positive
numeric vector of length 1.

averageSampleNumber0 The expected sample size under H0. Is a positive numeric vector of length
1.

See Also

getDesignCharacteristics for getting the design characteristics.

TrialDesignConditionalDunnett 297

TrialDesignConditionalDunnett

Conditional Dunnett Design

Description

Trial design for conditional Dunnett tests.

Details

This object should not be created directly; use getDesignConditionalDunnett with suitable ar-
guments to create a conditional Dunnett test design.

Fields

kMax The maximum number of stages K. Is a numeric vector of length 1 containing a whole number.

alpha The significance level alpha, default is 0.025. Is a numeric vector of length 1 containing a
value between 0 and 1.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

userAlphaSpending The user defined alpha spending. Contains the cumulative alpha-spending
(type I error rate) up to each interim stage. Is a numeric vector of length kMax containing
values between 0 and 1.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax.

stageLevels The adjusted significance levels to reach significance in a group sequential design.
Is a numeric vector of length kMax containing values between 0 and 1.

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector of length kMax contain-
ing values between 0 and 1.

bindingFutility If TRUE, the calculation of the critical values is affected by the futility bounds
and the futility threshold is binding in the sense that the study must be stopped if the futility
condition was reached (default is FALSE) Is a logical vector of length 1.

tolerance The numerical tolerance, default is 1e-06. Is a numeric vector of length 1.

informationAtInterim The information to be expected at interim, default is informationAtIn-
terim = 0.5. Is a numeric vector of length 1 containing a value between 0 and 1.

secondStageConditioning The way the second stage p-values are calculated within the closed
system of hypotheses. If FALSE, the unconditional adjusted p-values are used, otherwise con-
ditional adjusted p-values are calculated. Is a logical vector of length 1.

sided Describes if the alternative is one-sided (1) or two-sided (2). Is a numeric vector of length 1
containing a whole number.

See Also

getDesignConditionalDunnett for creating a conditional Dunnett test design.

298 TrialDesignFisher

TrialDesignFisher Fisher Design

Description

Trial design for Fisher’s combination test.

Details

This object should not be created directly; use getDesignFisher with suitable arguments to create
a Fisher combination test design.

Fields

kMax The maximum number of stages K. Is a numeric vector of length 1 containing a whole number.

alpha The significance level alpha, default is 0.025. Is a numeric vector of length 1 containing a
value between 0 and 1.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

userAlphaSpending The user defined alpha spending. Contains the cumulative alpha-spending
(type I error rate) up to each interim stage. Is a numeric vector of length kMax containing
values between 0 and 1.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax.

stageLevels The adjusted significance levels to reach significance in a group sequential design.
Is a numeric vector of length kMax containing values between 0 and 1.

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector of length kMax contain-
ing values between 0 and 1.

bindingFutility If TRUE, the calculation of the critical values is affected by the futility bounds
and the futility threshold is binding in the sense that the study must be stopped if the futility
condition was reached (default is FALSE) Is a logical vector of length 1.

tolerance The numerical tolerance, default is 1e-06. Is a numeric vector of length 1.

method "equalAlpha", "fullAlpha", "noInteraction", or "userDefinedAlpha", default is "equalAl-
pha". For details, see Wassmer, 1999, doi: 10.1002/(SICI)1521-4036(199906)41:3%3C279::AID-
BIMJ279%3E3.0.CO;2-V.

alpha0Vec The stopping for futility bounds for stage-wise p-values in Fisher’s combination test.
Is a numeric vector of length kMax minus 1 containing values between 0 and 1.

scale The scale for Fisher’s combination test. Numeric vector of length kMax-1 that applies to
Fisher’s design with unequally spaced information rates. Is a numeric vector of length kMax
minus 1 containing values between 0 and 1.

nonStochasticCurtailment If TRUE, the stopping rule is based on the phenomenon of non-stochastic
curtailment rather than stochastic reasoning. Is a logical vector of length 1.

sided Describes if the alternative is one-sided (1) or two-sided (2). Is a numeric vector of length 1
containing a whole number.

simAlpha The observed alpha error if simulations have been performed. Is a numeric vector of
length 1 containing a value between 0 and 1.

TrialDesignGroupSequential 299

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

See Also

getDesignFisher for creating a Fisher combination test design.

TrialDesignGroupSequential

Group Sequential Design

Description

Trial design for group sequential design.

Details

This object should not be created directly; use getDesignGroupSequential() with suitable argu-
ments to create a group sequential design.

Fields

kMax The maximum number of stages K. Is a numeric vector of length 1 containing a whole number.

alpha The significance level alpha, default is 0.025. Is a numeric vector of length 1 containing a
value between 0 and 1.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

userAlphaSpending The user defined alpha spending. Contains the cumulative alpha-spending
(type I error rate) up to each interim stage. Is a numeric vector of length kMax containing
values between 0 and 1.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax.

stageLevels The adjusted significance levels to reach significance in a group sequential design.
Is a numeric vector of length kMax containing values between 0 and 1.

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector of length kMax contain-
ing values between 0 and 1.

bindingFutility If TRUE, the calculation of the critical values is affected by the futility bounds
and the futility threshold is binding in the sense that the study must be stopped if the futility
condition was reached (default is FALSE) Is a logical vector of length 1.

tolerance The numerical tolerance, default is 1e-06. Is a numeric vector of length 1.

typeOfDesign The type of design. Is a character vector of length 1.

beta The Type II error rate necessary for providing sample size calculations (e.g., in getSampleSizeMeans),
beta spending function designs, or optimum designs, default is 0.20. Is a numeric vector of
length 1 containing a value between 0 and 1.

deltaWT Delta for Wang & Tsiatis Delta class. Is a numeric vector of length 1.

300 TrialDesignInverseNormal

deltaPT1 Delta1 for Pampallona & Tsiatis class rejecting H0 boundaries. Is a numeric vector of
length 1.

deltaPT0 Delta0 for Pampallona & Tsiatis class rejecting H1 (accepting H0) boundaries. Is a
numeric vector of length 1.

futilityBounds The futility bounds for each stage of the trial. Is a numeric vector of length kMax.

gammaA The parameter for the alpha spending function. Is a numeric vector of length 1.

gammaB The parameter for the beta spending function. Is a numeric vector of length 1.

optimizationCriterion The optimization criterion for optimum design within the Wang & Tsi-
atis class ("ASNH1", "ASNIFH1", "ASNsum"), default is "ASNH1".

sided Describes if the alternative is one-sided (1) or two-sided (2). Is a numeric vector of length 1
containing a whole number.

betaSpent The cumulative beta level spent at each stage of the trial. Only applicable for beta-
spending designs. Is a numeric vector of length kMax containing values between 0 and 1.

typeBetaSpending The type of beta spending. Is a character vector of length 1.

userBetaSpending The user defined beta spending. Contains the cumulative beta-spending up to
each interim stage. Is a numeric vector of length kMax containing values between 0 and 1.

power The one-sided power at each stage of the trial. Is a numeric vector of length kMax containing
values between 0 and 1.

twoSidedPower Specifies if power is defined two-sided at each stage of the trial. Is a logical vector
of length 1.

constantBoundsHP The constant bounds up to stage kMax - 1 for the Haybittle & Peto design
(default is 3). Is a numeric vector of length 1.

betaAdjustment If TRUE, beta spending values are linearly adjusted if an overlapping of deci-
sion regions for futility stopping at earlier stages occurs. Only applicable for two-sided beta-
spending designs. Is a logical vector of length 1.

delayedInformation Delay of information for delayed response designs. Is a numeric vector of
length kMax minus 1 containing values between 0 and 1.

decisionCriticalValues The decision critical values for each stage of the trial in a delayed
response design. Is a numeric vector of length kMax.

reversalProbabilities The probability to switch from stopping the trial for success (or futility)
and reaching non-rejection (or rejection) in a delayed response design. Is a numeric vector of
length kMax minus 1 containing values between 0 and 1.

See Also

getDesignGroupSequential() for creating a group sequential design.

TrialDesignInverseNormal

Inverse Normal Design

Description

Trial design for inverse normal method.

TrialDesignInverseNormal 301

Details

This object should not be created directly; use getDesignInverseNormal() with suitable argu-
ments to create a inverse normal design.

Fields

kMax The maximum number of stages K. Is a numeric vector of length 1 containing a whole number.

alpha The significance level alpha, default is 0.025. Is a numeric vector of length 1 containing a
value between 0 and 1.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

userAlphaSpending The user defined alpha spending. Contains the cumulative alpha-spending
(type I error rate) up to each interim stage. Is a numeric vector of length kMax containing
values between 0 and 1.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax.

stageLevels The adjusted significance levels to reach significance in a group sequential design.
Is a numeric vector of length kMax containing values between 0 and 1.

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector of length kMax contain-
ing values between 0 and 1.

bindingFutility If TRUE, the calculation of the critical values is affected by the futility bounds
and the futility threshold is binding in the sense that the study must be stopped if the futility
condition was reached (default is FALSE) Is a logical vector of length 1.

tolerance The numerical tolerance, default is 1e-06. Is a numeric vector of length 1.

typeOfDesign The type of design. Is a character vector of length 1.

beta The Type II error rate necessary for providing sample size calculations (e.g., in getSampleSizeMeans),
beta spending function designs, or optimum designs, default is 0.20. Is a numeric vector of
length 1 containing a value between 0 and 1.

deltaWT Delta for Wang & Tsiatis Delta class. Is a numeric vector of length 1.

deltaPT1 Delta1 for Pampallona & Tsiatis class rejecting H0 boundaries. Is a numeric vector of
length 1.

deltaPT0 Delta0 for Pampallona & Tsiatis class rejecting H1 (accepting H0) boundaries. Is a
numeric vector of length 1.

futilityBounds The futility bounds for each stage of the trial. Is a numeric vector of length kMax.

gammaA The parameter for the alpha spending function. Is a numeric vector of length 1.

gammaB The parameter for the beta spending function. Is a numeric vector of length 1.

optimizationCriterion The optimization criterion for optimum design within the Wang & Tsi-
atis class ("ASNH1", "ASNIFH1", "ASNsum"), default is "ASNH1".

sided Describes if the alternative is one-sided (1) or two-sided (2). Is a numeric vector of length 1
containing a whole number.

betaSpent The cumulative beta level spent at each stage of the trial. Only applicable for beta-
spending designs. Is a numeric vector of length kMax containing values between 0 and 1.

typeBetaSpending The type of beta spending. Is a character vector of length 1.

userBetaSpending The user defined beta spending. Contains the cumulative beta-spending up to
each interim stage. Is a numeric vector of length kMax containing values between 0 and 1.

302 TrialDesignPlanCountData

power The one-sided power at each stage of the trial. Is a numeric vector of length kMax containing
values between 0 and 1.

twoSidedPower Specifies if power is defined two-sided at each stage of the trial. Is a logical vector
of length 1.

constantBoundsHP The constant bounds up to stage kMax - 1 for the Haybittle & Peto design
(default is 3). Is a numeric vector of length 1.

betaAdjustment If TRUE, beta spending values are linearly adjusted if an overlapping of deci-
sion regions for futility stopping at earlier stages occurs. Only applicable for two-sided beta-
spending designs. Is a logical vector of length 1.

delayedInformation Delay of information for delayed response designs. Is a numeric vector of
length kMax minus 1 containing values between 0 and 1.

decisionCriticalValues The decision critical values for each stage of the trial in a delayed
response design. Is a numeric vector of length kMax.

reversalProbabilities The probability to switch from stopping the trial for success (or futility)
and reaching non-rejection (or rejection) in a delayed response design. Is a numeric vector of
length kMax minus 1 containing values between 0 and 1.

See Also

getDesignInverseNormal() for creating a inverse normal design.

TrialDesignPlan Basic Trial Design Plan

Description

Basic class for trial design plans.

Details

TrialDesignPlan is the basic class for

• TrialDesignPlanMeans,

• TrialDesignPlanRates, and

• TrialDesignPlanSurvival.

TrialDesignPlanCountData

Trial Design Plan Count Data

Description

Trial design plan for count data.

Details

This object cannot be created directly; use getSampleSizeCounts() with suitable arguments to
create a design plan for a dataset of rates.

TrialDesignPlanCountData 303

Fields

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

groups The group numbers. Is a numeric vector.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

optimumAllocationRatio The allocation ratio that is optimum with respect to the overall sample
size at given power. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

lambda1 The assumed hazard rate in the treatment group. Is a numeric vector of length kMax.

lambda2 The assumed hazard rate in the reference group. Is a numeric vector of length 1.

lambda A numeric value or vector that represents the assumed rate of a homogeneous Poisson
process in the pooled treatment groups Is a numeric vector.

theta A vector of standardized effect sizes (theta values). Is a numeric vector.

nFixed The sample size in a fixed (one-stage) design. Is a positive numeric vector.

nFixed1 The sample size in treatment arm 1 in a fixed (one-stage) design. Is a positive numeric
vector.

nFixed2 The sample size in treatment arm 2 in a fixed (one-stage) design. Is a positive numeric
vector.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

maxNumberOfSubjects1 The maximum number of subjects in treatment arm 1. Is a numeric vec-
tor.

maxNumberOfSubjects2 The maximum number of subjects in treatment arm 2. Is a numeric vec-
tor.

overallReject The overall rejection probability. Is a numeric vector.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

overdispersion A numeric value that represents the assumed overdispersion of the negative bi-
nomial distribution Is a numeric vector.

fixedExposureTime If specified, the fixed time of exposure per subject for count data Is a numeric
vector.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.

accrualIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

followUpTime The assumed follow-up time for the study. Is a numeric vector of length 1.

calendarTime The calendar time Is a numeric vector.

expectedStudyDurationH1 The expected study duration under H1 Is a numeric vector.

studyTime The study time Is a numeric vector.

304 TrialDesignPlanMeans

numberOfSubjects In simulation results data set: The number of subjects under consideration
when the interim analysis takes place.

expectedNumberOfSubjectsH1 The expected number of subjects under H1. Is a numeric vector.

informationOverStages The information over stages Is a numeric vector.

expectedInformationH0 The expected information under H0 Is a numeric vector.

expectedInformationH01 The expected information under H0/H1 Is a numeric vector.

expectedInformationH1 The expected information under H1 Is a numeric vector.

maxInformation The maximum information. Is a numeric vector of length 1 containing a whole
number.

futilityBoundsPValueScale The futility bounds for each stage of the trial on the p-value scale.
Is a numeric matrix.

TrialDesignPlanMeans Trial Design Plan Means

Description

Trial design plan for means.

Details

This object cannot be created directly; use getSampleSizeMeans() with suitable arguments to
create a design plan for a dataset of means.

Fields

meanRatio Specifies if the sample size for one-sided testing of H0: mu1/mu2 = thetaH0 has been
calculated. Is a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

alternative The alternative hypothesis value(s) for testing means. Is a numeric vector.

stDev The standard deviation used for sample size and power calculation. Is a numeric vector of
length 1.

groups The group numbers. Is a numeric vector.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

optimumAllocationRatio The allocation ratio that is optimum with respect to the overall sample
size at given power. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

effect The effect for randomly creating normally distributed responses. Is a numeric vector of
length kMax.

overallReject The overall rejection probability. Is a numeric vector.

TrialDesignPlanMeans 305

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

nFixed The sample size in a fixed (one-stage) design. Is a positive numeric vector.

nFixed1 The sample size in treatment arm 1 in a fixed (one-stage) design. Is a positive numeric
vector.

nFixed2 The sample size in treatment arm 2 in a fixed (one-stage) design. Is a positive numeric
vector.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

maxNumberOfSubjects1 The maximum number of subjects in treatment arm 1. Is a numeric vec-
tor.

maxNumberOfSubjects2 The maximum number of subjects in treatment arm 2. Is a numeric vec-
tor.

numberOfSubjects In simulation results data set: The number of subjects under consideration
when the interim analysis takes place.

numberOfSubjects1 In simulation results data set: The number of subjects under consideration in
treatment arm 1 when the interim analysis takes place.

numberOfSubjects2 In simulation results data set: The number of subjects under consideration in
treatment arm 2 when the interim analysis takes place.

expectedNumberOfSubjectsH0 The expected number of subjects under H0. Is a numeric vector.

expectedNumberOfSubjectsH01 The expected number of subjects under a value between H0 and
H1. Is a numeric vector.

expectedNumberOfSubjectsH1 The expected number of subjects under H1. Is a numeric vector.

criticalValuesEffectScale The critical values for each stage of the trial on the effect size scale.

criticalValuesEffectScaleLower The lower critical values for each stage of the trial on the
effect size scale. Is a numeric matrix.

criticalValuesEffectScaleUpper The upper critical values for each stage of the trial on the
effect size scale. Is a numeric matrix.

criticalValuesPValueScale The critical values for each stage of the trial on the p-value scale.

futilityBoundsEffectScale The futility bounds for each stage of the trial on the effect size
scale. Is a numeric matrix.

futilityBoundsEffectScaleLower The lower futility bounds for each stage of the trial on the
effect size scale. Is a numeric matrix.

futilityBoundsEffectScaleUpper The upper futility bounds for each stage of the trial on the
effect size scale. Is a numeric matrix.

futilityBoundsPValueScale The futility bounds for each stage of the trial on the p-value scale.
Is a numeric matrix.

306 TrialDesignPlanRates

TrialDesignPlanRates Trial Design Plan Rates

Description

Trial design plan for rates.

Details

This object cannot be created directly; use getSampleSizeRates() with suitable arguments to
create a design plan for a dataset of rates.

Fields

riskRatio Specifies if the sample size for one-sided testing of H0: pi1 / pi2 = thetaH0 has been
calculated. Is a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

groups The group numbers. Is a numeric vector.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

optimumAllocationRatio The allocation ratio that is optimum with respect to the overall sample
size at given power. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

effect The effect for randomly creating normally distributed responses. Is a numeric vector of
length kMax.

overallReject The overall rejection probability. Is a numeric vector.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

nFixed The sample size in a fixed (one-stage) design. Is a positive numeric vector.

nFixed1 The sample size in treatment arm 1 in a fixed (one-stage) design. Is a positive numeric
vector.

nFixed2 The sample size in treatment arm 2 in a fixed (one-stage) design. Is a positive numeric
vector.

TrialDesignPlanSurvival 307

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

maxNumberOfSubjects1 The maximum number of subjects in treatment arm 1. Is a numeric vec-
tor.

maxNumberOfSubjects2 The maximum number of subjects in treatment arm 2. Is a numeric vec-
tor.

numberOfSubjects In simulation results data set: The number of subjects under consideration
when the interim analysis takes place.

numberOfSubjects1 In simulation results data set: The number of subjects under consideration in
treatment arm 1 when the interim analysis takes place.

numberOfSubjects2 In simulation results data set: The number of subjects under consideration in
treatment arm 2 when the interim analysis takes place.

expectedNumberOfSubjectsH0 The expected number of subjects under H0. Is a numeric vector.

expectedNumberOfSubjectsH01 The expected number of subjects under a value between H0 and
H1. Is a numeric vector.

expectedNumberOfSubjectsH1 The expected number of subjects under H1. Is a numeric vector.

criticalValuesEffectScale The critical values for each stage of the trial on the effect size scale.

criticalValuesEffectScaleLower The lower critical values for each stage of the trial on the
effect size scale. Is a numeric matrix.

criticalValuesEffectScaleUpper The upper critical values for each stage of the trial on the
effect size scale. Is a numeric matrix.

criticalValuesPValueScale The critical values for each stage of the trial on the p-value scale.

futilityBoundsEffectScale The futility bounds for each stage of the trial on the effect size
scale. Is a numeric matrix.

futilityBoundsEffectScaleLower The lower futility bounds for each stage of the trial on the
effect size scale. Is a numeric matrix.

futilityBoundsEffectScaleUpper The upper futility bounds for each stage of the trial on the
effect size scale. Is a numeric matrix.

futilityBoundsPValueScale The futility bounds for each stage of the trial on the p-value scale.
Is a numeric matrix.

TrialDesignPlanSurvival

Trial Design Plan Survival

Description

Trial design plan for survival data.

Details

This object cannot be created directly; use getSampleSizeSurvival() with suitable arguments to
create a design plan for a dataset of survival data.

308 TrialDesignPlanSurvival

Fields

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

typeOfComputation The type of computation used, either "Schoenfeld", "Freedman", or "HsiehFreedman".

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

pi1 The assumed event rate in the treatment group. Is a numeric vector of length kMax containing
values between 0 and 1.

pi2 The assumed event rate in the control group. Is a numeric vector of length 1 containing a value
between 0 and 1.

median1 The assumed median survival time in the treatment group. Is a numeric vector.

median2 The assumed median survival time in the reference group. Is a numeric vector of length
1.

lambda1 The assumed hazard rate in the treatment group. Is a numeric vector of length kMax.

lambda2 The assumed hazard rate in the reference group. Is a numeric vector of length 1.

hazardRatio The hazard ratios under consideration. Is a numeric vector of length kMax.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

maxNumberOfSubjects1 The maximum number of subjects in treatment arm 1. Is a numeric vec-
tor.

maxNumberOfSubjects2 The maximum number of subjects in treatment arm 2. Is a numeric vec-
tor.

maxNumberOfEvents The maximum number of events for power calculations. Is a positive numeric
vector of length kMax.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

optimumAllocationRatio The allocation ratio that is optimum with respect to the overall sample
size at given power. Is a logical vector of length 1.

accountForObservationTimes If FALSE, only the event rates are used for the calculation of the
maximum number of subjects. Is a logical vector of length 1.

eventTime The assumed time under which the event rates are calculated. Is a numeric vector of
length 1.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.

totalAccrualTime The total accrual time, i.e., the maximum of accrualTime. Is a positive nu-
meric vector of length 1.

accrualIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

accrualIntensityRelative The relative accrual intensities.

kappa The shape of the Weibull distribution if kappa!=1. Is a numeric vector of length 1.

piecewiseSurvivalTime The time intervals for the piecewise definition of the exponential sur-
vival time cumulative distribution function. Is a numeric vector.

followUpTime The assumed follow-up time for the study. Is a numeric vector of length 1.

dropoutRate1 The assumed drop-out rate in the treatment group. Is a numeric vector of length 1
containing a value between 0 and 1.

TrialDesignPlanSurvival 309

dropoutRate2 The assumed drop-out rate in the control group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutTime The assumed time for drop-out rates in the control and treatment group. Is a numeric
vector of length 1.

chi The calculated event probability at end of trial. Is a numeric vector.

expectedNumberOfEvents The expected number of events under specified alternative. Is a nu-
meric vector.

eventsFixed The number of events in a fixed sample size design. Is a numeric vector.

nFixed The sample size in a fixed (one-stage) design. Is a positive numeric vector.

nFixed1 The sample size in treatment arm 1 in a fixed (one-stage) design. Is a positive numeric
vector.

nFixed2 The sample size in treatment arm 2 in a fixed (one-stage) design. Is a positive numeric
vector.

overallReject The overall rejection probability. Is a numeric vector.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

analysisTime The estimated time of analysis. Is a numeric matrix.

studyDurationH1 The study duration under the alternative hypothesis. Is a positive numeric vec-
tor.

studyDuration The study duration for specified effect size. Is a positive numeric vector.

maxStudyDuration The maximum study duration in survival designs. Is a numeric vector.

eventsPerStage The number of events per stage. Is a numeric matrix.

expectedEventsH0 The expected number of events under H0. Is a numeric vector.

expectedEventsH01 The expected number of events under a value between H0 and H1. Is a
numeric vector.

expectedEventsH1 The expected number of events under H1. Is a numeric vector.

numberOfSubjects In simulation results data set: The number of subjects under consideration
when the interim analysis takes place.

numberOfSubjects1 In simulation results data set: The number of subjects under consideration in
treatment arm 1 when the interim analysis takes place.

numberOfSubjects2 In simulation results data set: The number of subjects under consideration in
treatment arm 2 when the interim analysis takes place.

expectedNumberOfSubjectsH1 The expected number of subjects under H1. Is a numeric vector.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

criticalValuesEffectScale The critical values for each stage of the trial on the effect size scale.

criticalValuesEffectScaleLower The lower critical values for each stage of the trial on the
effect size scale. Is a numeric matrix.

criticalValuesEffectScaleUpper The upper critical values for each stage of the trial on the
effect size scale. Is a numeric matrix.

310 TrialDesignSet

criticalValuesPValueScale The critical values for each stage of the trial on the p-value scale.

futilityBoundsEffectScale The futility bounds for each stage of the trial on the effect size
scale. Is a numeric matrix.

futilityBoundsEffectScaleLower The lower futility bounds for each stage of the trial on the
effect size scale. Is a numeric matrix.

futilityBoundsEffectScaleUpper The upper futility bounds for each stage of the trial on the
effect size scale. Is a numeric matrix.

futilityBoundsPValueScale The futility bounds for each stage of the trial on the p-value scale.
Is a numeric matrix.

TrialDesignSet Class for trial design sets.

Description

TrialDesignSet is a class for creating a collection of different trial designs.

Details

This object cannot be created directly; better use getDesignSet() with suitable arguments to create
a set of designs.

Fields

designs The trial designs to be compared.

design The trial design.

variedParameters A character vector containing the names of the parameters that vary between
designs.

Methods

add(...) Adds ’designs’ OR a ’design’ and/or a design parameter, e.g., deltaWT = c(0.1, 0.3, 0.4)

See Also

getDesignSet()

utilitiesForPiecewiseExponentialDistribution 311

utilitiesForPiecewiseExponentialDistribution

The Piecewise Exponential Distribution

Description

Distribution function, quantile function and random number generation for the piecewise exponen-
tial distribution.

Usage

getPiecewiseExponentialDistribution(
time,
...,
piecewiseSurvivalTime = NA_real_,
piecewiseLambda = NA_real_,
kappa = 1

)

ppwexp(t, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

getPiecewiseExponentialQuantile(
quantile,
...,
piecewiseSurvivalTime = NA_real_,
piecewiseLambda = NA_real_,
kappa = 1

)

qpwexp(q, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

getPiecewiseExponentialRandomNumbers(
n,
...,
piecewiseSurvivalTime = NA_real_,
piecewiseLambda = NA_real_,
kappa = 1

)

rpwexp(n, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of

312 utilitiesForPiecewiseExponentialDistribution

the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

t, time Vector of time values.
s, piecewiseSurvivalTime

Vector of start times defining the "time pieces".

lambda, piecewiseLambda

Vector of lambda values (hazard rates) corresponding to the start times.

q, quantile Vector of quantiles.

n Number of observations.

Details

getPiecewiseExponentialDistribution() (short: ppwexp()), getPiecewiseExponentialQuantile()
(short: qpwexp()), and getPiecewiseExponentialRandomNumbers() (short: rpwexp()) provide
probabilities, quantiles, and random numbers according to a piecewise exponential or a Weibull dis-
tribution. The piecewise definition is performed through a vector of starting times (piecewiseSurvivalTime)
and a vector of hazard rates (piecewiseLambda). You can also use a list that defines the starting
times and piecewise lambdas together and define piecewiseSurvivalTime as this list. The list needs
to have the form, e.g., piecewiseSurvivalTime <- list("0 - <6" = 0.025, "6 - <9" = 0.04, "9 - <15"
= 0.015, ">=15" = 0.007) . For the Weibull case, you can also specify a shape parameter kappa in
order to calculate probabilities, quantiles, or random numbers. In this case, no piecewise definition
is possible, i.e., only piecewiseLambda (as a single value) and kappa need to be specified.

Value

A numeric value or vector will be returned.

Examples

Calculate probabilties for a range of time values for a
piecewise exponential distribution with hazard rates
0.025, 0.04, 0.015, and 0.007 in the intervals
[0, 6), [6, 9), [9, 15), [15, Inf), respectively,
and re-return the time values:
piecewiseSurvivalTime <- list(

"0 - <6" = 0.025,
"6 - <9" = 0.04,
"9 - <15" = 0.015,
">=15" = 0.01

)
y <- getPiecewiseExponentialDistribution(seq(0, 150, 15),

piecewiseSurvivalTime = piecewiseSurvivalTime
)
getPiecewiseExponentialQuantile(y,

piecewiseSurvivalTime = piecewiseSurvivalTime
)

utilitiesForSurvivalTrials 313

utilitiesForSurvivalTrials

Survival Helper Functions for Conversion of Pi, Lambda, Median

Description

Functions to convert pi, lambda and median values into each other.

Usage

getLambdaByPi(piValue, eventTime = 12, kappa = 1)

getLambdaByMedian(median, kappa = 1)

getHazardRatioByPi(pi1, pi2, eventTime = 12, kappa = 1)

getPiByLambda(lambda, eventTime = 12, kappa = 1)

getPiByMedian(median, eventTime = 12, kappa = 1)

getMedianByLambda(lambda, kappa = 1)

getMedianByPi(piValue, eventTime = 12, kappa = 1)

Arguments

piValue, pi1, pi2, lambda, median

Value that shall be converted.

eventTime The assumed time under which the event rates are calculated, default is 12.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

Details

Can be used, e.g., to convert median values into pi or lambda values for usage in getSampleSizeSurvival()
or getPowerSurvival().

Value

Returns a numeric value or vector will be returned.

314 writeDataset

writeDataset Write Dataset

Description

Writes a dataset to a CSV file.

Usage

writeDataset(
dataset,
file,
...,
append = FALSE,
quote = TRUE,
sep = ",",
eol = "\n",
na = "NA",
dec = ".",
row.names = TRUE,
col.names = NA,
qmethod = "double",
fileEncoding = "UTF-8"

)

Arguments

dataset A dataset.
file The target CSV file.
... Further arguments to be passed to write.table.
append Logical. Only relevant if file is a character string. If TRUE, the output is appended

to the file. If FALSE, any existing file of the name is destroyed.
quote The set of quoting characters. To disable quoting altogether, use quote = "". See

scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

sep The field separator character. Values on each line of the file are separated by this
character. If sep = "," (the default for writeDataset) the separator is a comma.

eol The character(s) to print at the end of each line (row).
na The string to use for missing values in the data.
dec The character used in the file for decimal points.
row.names Either a logical value indicating whether the row names of dataset are to be

written along with dataset, or a character vector of row names to be written.
col.names Either a logical value indicating whether the column names of dataset are to

be written along with dataset, or a character vector of column names to be
written. See the section on ’CSV files’ for the meaning of col.names = NA.

qmethod A character string specifying how to deal with embedded double quote charac-
ters when quoting strings. Must be one of "double" (default in writeDataset)
or "escape".

writeDatasets 315

fileEncoding Character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

writeDataset() is a wrapper function that coerces the dataset to a data frame and uses
write.table to write it to a CSV file.

See Also

• writeDatasets() for writing multiple datasets,
• readDataset() for reading a single dataset,
• readDatasets() for reading multiple datasets.

Examples

Not run:
datasetOfRates <- getDataset(

n1 = c(11, 13, 12, 13),
n2 = c(8, 10, 9, 11),
events1 = c(10, 10, 12, 12),
events2 = c(3, 5, 5, 6)

)
writeDataset(datasetOfRates, "dataset_rates.csv")

End(Not run)

writeDatasets Write Multiple Datasets

Description

Writes a list of datasets to a CSV file.

Usage

writeDatasets(
datasets,
file,
...,
append = FALSE,
quote = TRUE,
sep = ",",
eol = "\n",
na = "NA",
dec = ".",
row.names = TRUE,
col.names = NA,
qmethod = "double",
fileEncoding = "UTF-8"

)

316 writeDatasets

Arguments

datasets A list of datasets.

file The target CSV file.

... Further arguments to be passed to write.table.

append Logical. Only relevant if file is a character string. If TRUE, the output is appended
to the file. If FALSE, any existing file of the name is destroyed.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

sep The field separator character. Values on each line of the file are separated by
this character. If sep = "," (the default for writeDatasets) the separator is a
comma.

eol The character(s) to print at the end of each line (row).

na The string to use for missing values in the data.

dec The character used in the file for decimal points.

row.names Either a logical value indicating whether the row names of dataset are to be
written along with dataset, or a character vector of row names to be written.

col.names Either a logical value indicating whether the column names of dataset are to
be written along with dataset, or a character vector of column names to be
written. See the section on ’CSV files’ for the meaning of col.names = NA.

qmethod A character string specifying how to deal with embedded double quote charac-
ters when quoting strings. Must be one of "double" (default in writeDatasets)
or "escape".

fileEncoding Character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

The format of the CSV file is optimized for usage of readDatasets().

See Also

• writeDataset() for writing a single dataset,

• readDatasets() for reading multiple datasets,

• readDataset() for reading a single dataset.

Examples

Not run:
d1 <- getDataset(

n1 = c(11, 13, 12, 13),
n2 = c(8, 10, 9, 11),
events1 = c(10, 10, 12, 12),
events2 = c(3, 5, 5, 6)

)
d2 <- getDataset(

n1 = c(9, 13, 12, 13),

[,TrialDesignSet-method 317

n2 = c(6, 10, 9, 11),
events1 = c(10, 10, 12, 12),
events2 = c(4, 5, 5, 6)

)
datasets <- list(d1, d2)
writeDatasets(datasets, "datasets_rates.csv")

End(Not run)

[,TrialDesignSet-method

Access Trial Design by Index

Description

Function to the TrialDesign at position i in a TrialDesignSet object.

Usage

S4 method for signature 'TrialDesignSet'
x[i, j, ..., drop = TRUE]

Details

Can be used to iterate over all designs in a design set.

Examples

designSet <- getDesignSet(design = getDesignFisher(), alpha = c(0.01, 0.05))
for (i in 1:length(designSet)) {

print(designSet[i]$alpha)
}

Index

∗ analysis functions
getAnalysisResults, 46
getClosedCombinationTestResults,

51
getClosedConditionalDunnettTestResults,

52
getConditionalPower, 54
getConditionalRejectionProbabilities,

56
getFinalConfidenceInterval, 78
getFinalPValue, 80
getRepeatedConfidenceIntervals,

112
getRepeatedPValues, 114
getStageResults, 177
getTestActions, 179

∗ design functions
getDesignCharacteristics, 64
getDesignConditionalDunnett, 65
getDesignFisher, 66
getDesignGroupSequential, 68
getDesignInverseNormal, 71
getGroupSequentialProbabilities,

81
getPowerAndAverageSampleNumber, 96

∗ internal
[,TrialDesignSet-method, 317
AccrualTime, 9
AnalysisResults, 10
AnalysisResultsConditionalDunnett,

10
AnalysisResultsEnrichment, 11
AnalysisResultsEnrichmentFisher,

12
AnalysisResultsEnrichmentInverseNormal,

13
AnalysisResultsFisher, 14
AnalysisResultsGroupSequential, 16
AnalysisResultsInverseNormal, 17
AnalysisResultsMultiArm, 18
AnalysisResultsMultiArmFisher-class,

19
AnalysisResultsMultiArmInverseNormal,

20
AnalysisResultsMultiHypotheses, 21
as.data.frame.AnalysisResults, 22
as.data.frame.ParameterSet, 22
as.data.frame.PowerAndAverageSampleNumberResult,

23
as.data.frame.StageResults, 24
as.data.frame.TrialDesign, 25
as.data.frame.TrialDesignCharacteristics,

26
as.data.frame.TrialDesignPlan, 27
as.data.frame.TrialDesignSet, 28
as.matrix.FieldSet, 29
ClosedCombinationTestResults, 31
ConditionalPowerResults, 32
ConditionalPowerResultsEnrichmentMeans,

32
ConditionalPowerResultsEnrichmentRates,

33
ConditionalPowerResultsMeans, 34
ConditionalPowerResultsRates, 34
ConditionalPowerResultsSurvival,

35
dataEnrichmentMeans, 36
dataEnrichmentMeansStratified, 36
dataEnrichmentRates, 36
dataEnrichmentRatesStratified, 37
dataEnrichmentSurvival, 37
dataEnrichmentSurvivalStratified,

37
dataMeans, 38
dataMultiArmMeans, 38
dataMultiArmRates, 38
dataMultiArmSurvival, 39
dataRates, 39
Dataset, 39
DatasetMeans, 40
DatasetRates, 40
DatasetSurvival, 41
dataSurvival, 42
EventProbabilities, 42
FieldSet, 43
getLambdaStepFunction, 83

318

INDEX 319

getLogLevel, 84
getLongFormat, 85
getParameterCaption, 90
getParameterName, 90
getPlotSettings, 95
getWideFormat, 180
length.TrialDesignSet, 183
names.AnalysisResults, 185
names.FieldSet, 186
names.SimulationResults, 186
names.StageResults, 187
names.TrialDesignSet, 187
NumberOfSubjects, 188
param_accrualIntensity, 188
param_accrualIntensity_counts, 189
param_accrualIntensityType, 189
param_accrualTime, 189
param_accrualTime_counts, 190
param_activeArms, 190
param_adaptations, 190
param_allocationRatioPlanned, 191
param_allocationRatioPlanned_sampleSize,

191
param_alpha, 191
param_alternative, 192
param_alternative_simulation, 192
param_beta, 192
param_bindingFutility, 193
param_calcEventsFunction, 193
param_calcSubjectsFunction, 193
param_conditionalPower, 194
param_conditionalPowerSimulation,

194
param_dataInput, 194
param_design, 195
param_design_with_default, 195
param_digits, 195
param_directionUpper, 195
param_dropoutRate1, 196
param_dropoutRate2, 196
param_dropoutTime, 196
param_effectList, 196
param_effectMatrix, 197
param_effectMeasure, 197
param_epsilonValue, 197
param_eventTime, 197
param_fixedExposureTime_counts,

198
param_followUpTime_counts, 198
param_gED50, 198
param_grid, 199
param_groups, 199

param_hazardRatio, 199
param_includeAllParameters, 200
param_informationEpsilon, 200
param_informationRates, 200
param_intersectionTest_Enrichment,

201
param_intersectionTest_MultiArm,

201
param_kappa, 201
param_kMax, 202
param_lambda1, 202
param_lambda1_counts, 202
param_lambda2, 202
param_lambda2_counts, 203
param_lambda_counts, 203
param_legendPosition, 203
param_maxInformation, 204
param_maxNumberOfEventsPerStage,

204
param_maxNumberOfIterations, 204
param_maxNumberOfSubjects, 205
param_maxNumberOfSubjects_survival,

205
param_maxNumberOfSubjectsPerStage,

205
param_median1, 206
param_median2, 206
param_minNumberOfEventsPerStage,

206
param_minNumberOfSubjectsPerStage,

207
param_niceColumnNamesEnabled, 207
param_nMax, 207
param_normalApproximation, 208
param_nPlanned, 208
param_overdispersion_counts, 208
param_palette, 209
param_pi1_rates, 209
param_pi1_survival, 209
param_pi2_rates, 209
param_pi2_survival, 210
param_piecewiseSurvivalTime, 210
param_plannedEvents, 210
param_plannedSubjects, 211
param_plotPointsEnabled, 211
param_plotSettings, 211
param_populations, 212
param_rValue, 212
param_seed, 212
param_selectArmsFunction, 212
param_selectPopulationsFunction,

213

320 INDEX

param_showSource, 213
param_showStatistics, 213
param_sided, 214
param_slope, 214
param_stage, 214
param_stageResults, 214
param_stDev, 215
param_stDevH1, 215
param_stDevSimulation, 215
param_stratifiedAnalysis, 216
param_successCriterion, 216
param_theta, 216
param_theta_counts, 217
param_thetaH0, 217
param_thetaH1, 217
param_three_dots, 218
param_three_dots_plot, 218
param_threshold, 218
param_tolerance, 218
param_typeOfComputation, 219
param_typeOfDesign, 219
param_typeOfSelection, 219
param_typeOfShape, 220
param_userAlphaSpending, 220
param_varianceOption, 221
ParameterSet, 188
PerformanceScore, 221
PiecewiseSurvivalTime, 221
PlotSettings, 244
PowerAndAverageSampleNumberResult,

246
print.Dataset, 247
print.FieldSet, 247
print.ParameterSet, 248
print.SimulationResults, 248
printCitation, 250
rawDataTwoArmNormal, 250
resetLogLevel, 256
setLogLevel, 257
SimulationResults, 260
SimulationResultsEnrichmentMeans,

261
SimulationResultsEnrichmentRates,

263
SimulationResultsEnrichmentSurvival,

265
SimulationResultsMeans, 267
SimulationResultsMultiArmMeans,

268
SimulationResultsMultiArmRates,

270
SimulationResultsMultiArmSurvival,

272
SimulationResultsRates, 274
SimulationResultsSurvival, 276
StageResults, 278
StageResultsEnrichmentMeans, 279
StageResultsEnrichmentRates, 280
StageResultsEnrichmentSurvival,

281
StageResultsMeans, 281
StageResultsMultiArmMeans, 282
StageResultsMultiArmRates, 284
StageResultsMultiArmSurvival, 285
StageResultsRates, 286
StageResultsSurvival, 287
summary.AnalysisResults, 288
summary.Dataset, 289
summary.ParameterSet, 290
summary.TrialDesignSet, 292
SummaryFactory, 293
t,FieldSet-method, 293
test_plan_section, 295
TrialDesign, 295
TrialDesignCharacteristics, 296
TrialDesignConditionalDunnett, 297
TrialDesignFisher, 298
TrialDesignGroupSequential, 299
TrialDesignInverseNormal, 300
TrialDesignPlan, 302
TrialDesignPlanCountData, 302
TrialDesignPlanMeans, 304
TrialDesignPlanRates, 306
TrialDesignPlanSurvival, 307
TrialDesignSet, 310

∗ output formats
getOutputFormat, 88
setOutputFormat, 258

∗ power functions
getPowerCounts, 97
getPowerMeans, 100
getPowerRates, 102
getPowerSurvival, 105

∗ sample size functions
getSampleSizeCounts, 115
getSampleSizeMeans, 118
getSampleSizeRates, 120
getSampleSizeSurvival, 122

[,TrialDesignSet-method, 317

AccrualTime, 9, 44, 86
AnalysisResults, 10, 22, 49, 185–187, 288
AnalysisResultsConditionalDunnett, 10,

10, 18
AnalysisResultsEnrichment, 11, 21

INDEX 321

AnalysisResultsEnrichmentFisher, 10, 11,
12

AnalysisResultsEnrichmentInverseNormal,
10, 11, 13

AnalysisResultsFisher, 10, 14
AnalysisResultsGroupSequential, 10, 16
AnalysisResultsInverseNormal, 10, 17
AnalysisResultsMultiArm, 18, 21
AnalysisResultsMultiArmFisher, 10, 18
AnalysisResultsMultiArmFisher

(AnalysisResultsMultiArmFisher-class),
19

AnalysisResultsMultiArmFisher-class,
19

AnalysisResultsMultiArmInverseNormal,
10, 18, 20

AnalysisResultsMultiHypotheses, 21
as.data.frame(), 44, 49, 51, 53, 55, 60, 64,

66, 67, 70, 73, 75, 78, 86, 94, 96, 99,
102, 104, 108, 117, 119, 121, 125,
131, 136, 140, 144, 150, 156, 160,
164, 170, 179, 253

as.data.frame.AnalysisResults, 22
as.data.frame.ParameterSet, 22
as.data.frame.PowerAndAverageSampleNumberResult,

23
as.data.frame.StageResults, 24
as.data.frame.TrialDesign, 25
as.data.frame.TrialDesignCharacteristics,

26
as.data.frame.TrialDesignPlan, 27
as.data.frame.TrialDesignSet, 28
as.matrix(), 44, 49, 51, 53, 55, 60, 64, 66,

67, 70, 73, 75, 78, 86, 94, 96, 99,
102, 104, 108, 117, 119, 121, 125,
131, 136, 140, 144, 150, 156, 160,
164, 170, 179, 253

as.matrix.FieldSet, 29
as251Normal, 29
as251StudentT, 30

character, 84, 90, 91, 179, 185–187, 252
ClosedCombinationTestResults, 31, 51, 53
ConditionalPowerResults, 32, 55
ConditionalPowerResultsEnrichmentMeans,

32
ConditionalPowerResultsEnrichmentRates,

33
ConditionalPowerResultsMeans, 34
ConditionalPowerResultsRates, 34
ConditionalPowerResultsSurvival, 35

data.frame, 22–28, 36–39, 42, 44, 49, 51, 53,

55, 58, 60, 64, 66, 67, 70, 73, 75, 78,
85, 86, 94, 96, 99, 102, 104, 108,
111, 117, 119, 121, 125, 131, 136,
140, 144, 145, 150, 156, 160, 164,
169–172, 179, 180, 250, 253

dataEnrichmentMeans, 36
dataEnrichmentMeansStratified, 36
dataEnrichmentRates, 36
dataEnrichmentRatesStratified, 37
dataEnrichmentSurvival, 37
dataEnrichmentSurvivalStratified, 37
dataMeans, 38
dataMultiArmMeans, 38
dataMultiArmRates, 38
dataMultiArmSurvival, 39
dataRates, 39
Dataset, 39, 60, 225, 247, 253, 255, 289
DatasetEnrichmentSurvival, 39
DatasetEnrichmentSurvival

(DatasetSurvival), 41
DatasetEnrichmentSurvival-class

(DatasetSurvival), 41
DatasetMeans, 39, 40, 59
DatasetRates, 39, 40, 59
DatasetSurvival, 39, 41, 59
dataSurvival, 42

EventProbabilities, 42, 78, 226, 227, 229

FieldSet, 23, 29, 43, 186, 247
format, 259

getAccrualTime, 43
getAccrualTime(), 43, 77, 86, 107, 124, 168,

188, 189
getAnalysisResults, 10, 12–14, 16, 17, 19,

20, 31, 46, 52, 53, 55, 57, 80, 81,
113, 114, 179, 180

getAnalysisResults(), 22, 36–39, 42, 60,
88, 185, 222, 223, 234, 258

getAvailablePlotTypes (plotTypes), 245
getClosedCombinationTestResults, 49, 51,

53, 55, 57, 80, 81, 113, 114, 179, 180
getClosedConditionalDunnettTestResults,

49, 52, 52, 55, 57, 80, 81, 113, 114,
179, 180

getClosedConditionalDunnettTestResults(),
65

getConditionalPower, 32–35, 49, 52, 53, 54,
57, 80, 81, 113, 114, 179, 180

getConditionalPower(), 32
getConditionalRejectionProbabilities,

49, 52, 53, 55, 56, 80, 81, 113, 114,
179, 180

322 INDEX

getData, 57
getData(), 111, 145, 164, 171
getDataSet (getDataset), 59
getDataset, 40, 41, 59
getDataset(), 46, 79, 112, 177, 194, 253
getDesignCharacteristics, 64, 66, 68, 71,

74, 82, 96, 296
getDesignConditionalDunnett, 64, 65, 68,

71, 74, 82, 96, 297
getDesignConditionalDunnett(), 53
getDesignFisher, 64, 66, 66, 71, 74, 82, 96,

298, 299
getDesignFisher(), 237
getDesignGroupSequential, 64, 66, 68, 68,

74, 82, 96
getDesignGroupSequential(), 237, 245,

299, 300
getDesignInverseNormal, 64, 66, 68, 71, 71,

82, 96
getDesignInverseNormal(), 237, 301, 302
getDesignSet, 74
getDesignSet(), 68, 71, 74, 242, 310
getEventProbabilities, 76
getFinalConfidenceInterval, 49, 52, 53,

55, 57, 78, 81, 113, 114, 179, 180
getFinalPValue, 49, 52, 53, 55, 57, 80, 80,

113, 114, 179, 180
getGroupSequentialProbabilities, 64, 66,

68, 71, 74, 81, 96
getHazardRatioByPi

(utilitiesForSurvivalTrials),
313

getLambdaByMedian
(utilitiesForSurvivalTrials),
313

getLambdaByPi
(utilitiesForSurvivalTrials),
313

getLambdaStepFunction, 83
getLogLevel, 84
getLogLevel(), 256, 258
getLongFormat, 85
getLongFormat(), 180
getMedianByLambda

(utilitiesForSurvivalTrials),
313

getMedianByPi
(utilitiesForSurvivalTrials),
313

getNumberOfSubjects, 85
getNumberOfSubjects(), 45
getObjectRCode (rcmd), 251

getObjectRCode(), 252
getObservedInformationRates, 87
getObservedInformationRates(), 49
getOutputFormat, 88, 259
getOutputFormat(), 259
getParameterCaption, 90
getParameterCaption(), 91
getParameterName, 90
getParameterName(), 90
getPerformanceScore, 91, 221
getPiByLambda

(utilitiesForSurvivalTrials),
313

getPiByMedian
(utilitiesForSurvivalTrials),
313

getPiecewiseExponentialDistribution
(utilitiesForPiecewiseExponentialDistribution),
311

getPiecewiseExponentialQuantile
(utilitiesForPiecewiseExponentialDistribution),
311

getPiecewiseExponentialRandomNumbers
(utilitiesForPiecewiseExponentialDistribution),
311

getPiecewiseSurvivalTime, 92
getPiecewiseSurvivalTime(), 77, 107, 124,

168, 210
getPlotSettings, 95
getPlotSettings(), 211, 224, 225, 228, 229,

231, 233, 235, 238, 241, 243
getPowerAndAverageSampleNumber, 64, 66,

68, 71, 74, 82, 96
getPowerAndAverageSampleNumber(), 239,

246
getPowerCounts, 97, 102, 104, 109
getPowerCounts(), 240
getPowerMeans, 99, 100, 104, 109
getPowerMeans(), 240
getPowerRates, 99, 102, 102, 109
getPowerRates(), 240
getPowerSurvival, 99, 102, 104, 105
getPowerSurvival(), 240, 313
getRawData, 110
getRawData(), 169, 172
getRepeatedConfidenceIntervals, 49, 52,

53, 55, 57, 80, 81, 112, 114, 179, 180
getRepeatedPValues, 49, 52, 53, 55, 57, 80,

81, 113, 114, 179, 180
getSampleSizeCounts, 115, 119, 122, 126
getSampleSizeCounts(), 240, 302
getSampleSizeMeans, 117, 118, 122, 126

INDEX 323

getSampleSizeMeans(), 69, 72, 192, 240,
245, 304

getSampleSizeRates, 117, 119, 120, 126
getSampleSizeRates(), 240, 306
getSampleSizeSurvival, 117, 119, 122, 122
getSampleSizeSurvival(), 78, 86, 240, 307,

313
getSimulationEnrichmentMeans, 128
getSimulationEnrichmentMeans(), 261
getSimulationEnrichmentRates, 133
getSimulationEnrichmentRates(), 263
getSimulationEnrichmentSurvival, 137
getSimulationEnrichmentSurvival(), 265
getSimulationMeans, 141
getSimulationMeans(), 57, 58, 267
getSimulationMultiArmMeans, 146
getSimulationMultiArmMeans(), 57, 58,

268
getSimulationMultiArmRates, 152
getSimulationMultiArmRates(), 57, 58,

270
getSimulationMultiArmSurvival, 156
getSimulationMultiArmSurvival(), 57, 58,

272
getSimulationRates, 161
getSimulationRates(), 57, 58, 274
getSimulationSurvival, 166
getSimulationSurvival(), 57, 111, 232,

276
getStageResults, 49, 52, 53, 55, 57, 80, 81,

113, 114, 177, 180
getStageResults(), 51, 53, 54, 56, 81, 114,

179, 214, 234
getTestActions, 49, 52, 53, 55, 57, 80, 81,

113, 114, 179, 179
getWideFormat, 180
getWideFormat(), 85

integer, 183

kable, 181, 181
kable.ParameterSet, 181
knit_print, 182
knit_print.ParameterSet, 182
knit_print.SummaryFactory, 182

length, 75
length.TrialDesignSet, 183
list, 80, 81, 255

make.names, 22–29, 207
matrix, 29, 44, 49, 51, 53, 55, 57, 60, 64, 66,

67, 70, 73, 75, 78, 86, 94, 96, 99,

102, 104, 108, 113, 114, 117, 119,
121, 125, 131, 136, 140, 144, 150,
156, 160, 164, 170, 179, 253

methods, 44, 49, 51, 53, 55, 64, 66, 67, 70, 74,
75, 78, 86, 94, 96, 99, 102, 104, 108,
117, 119, 122, 126, 131, 136, 140,
145, 150, 156, 160, 165, 172, 179,
289–291, 293

mvnprd, 30, 183
mvstud, 31, 184

names, 49, 75, 92, 178
names(), 44, 51, 53, 55, 60, 64, 65, 67, 70, 73,

78, 86, 94, 96, 99, 102, 104, 108,
116, 119, 121, 125, 131, 136, 140,
144, 150, 156, 160, 164, 170, 253,
288, 289, 291, 292

names.AnalysisResults, 185
names.FieldSet, 186
names.SimulationResults, 186
names.StageResults, 187
names.TrialDesignSet, 187
nMax, 239
NumberOfSubjects, 86, 188, 227–229
numeric, 57, 114, 179, 312, 313

param_accrualIntensity, 188
param_accrualIntensity_counts, 189
param_accrualIntensityType, 189
param_accrualTime, 189
param_accrualTime_counts, 190
param_activeArms, 190
param_adaptations, 190
param_allocationRatioPlanned, 191
param_allocationRatioPlanned_sampleSize,

191
param_alpha, 191
param_alternative, 192
param_alternative_simulation, 192
param_beta, 192
param_bindingFutility, 193
param_calcEventsFunction, 193
param_calcSubjectsFunction, 193
param_conditionalPower, 194
param_conditionalPowerSimulation, 194
param_dataInput, 194
param_design, 195
param_design_with_default, 195
param_digits, 195
param_directionUpper, 195
param_dropoutRate1, 196
param_dropoutRate2, 196
param_dropoutTime, 196

324 INDEX

param_effectList, 196
param_effectMatrix, 197
param_effectMeasure, 197
param_epsilonValue, 197
param_eventTime, 197
param_fixedExposureTime_counts, 198
param_followUpTime_counts, 198
param_gED50, 198
param_grid, 199
param_groups, 199
param_hazardRatio, 199
param_includeAllParameters, 200
param_informationEpsilon, 200
param_informationRates, 200
param_intersectionTest_Enrichment, 201
param_intersectionTest_MultiArm, 201
param_kappa, 201
param_kMax, 202
param_lambda1, 202
param_lambda1_counts, 202
param_lambda2, 202
param_lambda2_counts, 203
param_lambda_counts, 203
param_legendPosition, 203
param_maxInformation, 204
param_maxNumberOfEventsPerStage, 204
param_maxNumberOfIterations, 204
param_maxNumberOfSubjects, 205
param_maxNumberOfSubjects_survival,

205
param_maxNumberOfSubjectsPerStage, 205
param_median1, 206
param_median2, 206
param_minNumberOfEventsPerStage, 206
param_minNumberOfSubjectsPerStage, 207
param_niceColumnNamesEnabled, 207
param_nMax, 207
param_normalApproximation, 208
param_nPlanned, 208
param_overdispersion_counts, 208
param_palette, 209
param_pi1_rates, 209
param_pi1_survival, 209
param_pi2_rates, 209
param_pi2_survival, 210
param_piecewiseSurvivalTime, 210
param_plannedEvents, 210
param_plannedSubjects, 211
param_plotPointsEnabled, 211
param_plotSettings, 211
param_populations, 212
param_rValue, 212

param_seed, 212
param_selectArmsFunction, 212
param_selectPopulationsFunction, 213
param_showSource, 213
param_showStatistics, 213
param_sided, 214
param_slope, 214
param_stage, 214
param_stageResults, 214
param_stDev, 215
param_stDevH1, 215
param_stDevSimulation, 215
param_stratifiedAnalysis, 216
param_successCriterion, 216
param_theta, 216
param_theta_counts, 217
param_thetaH0, 217
param_thetaH1, 217
param_three_dots, 218
param_three_dots_plot, 218
param_threshold, 218
param_tolerance, 218
param_typeOfComputation, 219
param_typeOfDesign, 219
param_typeOfSelection, 219
param_typeOfShape, 220
param_userAlphaSpending, 220
param_varianceOption, 221
ParameterSet, 181, 188, 230, 248, 290–292
PerformanceScore, 221
PiecewiseSurvivalTime, 94, 221
plot, 84
plot arguments, 223, 234
plot(), 44, 49, 51, 53, 55, 60, 64, 66, 67, 70,

73, 75, 78, 86, 94, 96, 99, 102, 104,
108, 117, 119, 121, 125, 131, 136,
140, 144, 150, 156, 160, 164, 170,
178, 239, 253

plot.AnalysisResults, 222
plot.AnalysisResults(), 55
plot.Dataset, 225
plot.EventProbabilities, 226
plot.NumberOfSubjects, 228
plot.ParameterSet, 230
plot.SimulationResults, 231
plot.StageResults, 233
plot.StageResults(), 55
plot.SummaryFactory, 236
plot.TrialDesign, 237
plot.TrialDesignCharacteristics

(plot.TrialDesign), 237
plot.TrialDesignPlan, 239

INDEX 325

plot.TrialDesignSet, 242
PlotSettings, 244
plotTypes, 245
PowerAndAverageSampleNumberResult, 23,

24, 96, 246
ppwexp

(utilitiesForPiecewiseExponentialDistribution),
311

print, 199, 224, 233, 238, 241, 243
print(), 44, 49, 51, 53, 55, 60, 64, 66, 67, 70,

73, 75, 78, 86, 94, 96, 99, 102, 104,
108, 117, 119, 121, 125, 131, 136,
140, 144, 150, 156, 160, 164, 170,
178, 253, 288, 289, 291, 292

print.Dataset, 247
print.FieldSet, 247
print.ParameterSet, 248
print.SimulationResults, 248
print.SummaryFactory, 249
print.TrialDesignCharacteristics, 249
printCitation, 250

qpwexp
(utilitiesForPiecewiseExponentialDistribution),
311

range, 144, 164, 171
rawDataTwoArmNormal, 250
rcmd, 251
rcmd(), 252
read.table, 253, 255
readDataset, 252
readDataset(), 255, 315, 316
readDatasets, 254
readDatasets(), 254, 315, 316
resetLogLevel, 256
resetLogLevel(), 84, 258
reshape, 253
rpact, 256
rpact-package (rpact), 256
rpwexp

(utilitiesForPiecewiseExponentialDistribution),
311

setLogLevel, 257
setLogLevel(), 84, 256
setOutputFormat, 89, 258
setOutputFormat(), 89
SimulationResults, 57, 111, 131, 136, 140,

144, 150, 155, 160, 164, 170, 186,
248, 260

SimulationResultsEnrichmentMeans, 260,
261, 267

SimulationResultsEnrichmentRates, 260,
263, 274

SimulationResultsEnrichmentSurvival,
260, 265, 276

SimulationResultsMeans, 260, 267, 267
SimulationResultsMultiArmMeans, 260,

267, 268
SimulationResultsMultiArmRates, 260,

270, 274
SimulationResultsMultiArmSurvival, 260,

272, 276
SimulationResultsRates, 260, 274, 274
SimulationResultsSurvival, 260, 276, 276
StageResults, 25, 178, 187, 278
StageResultsEnrichmentMeans, 278, 279
StageResultsEnrichmentRates, 278, 280
StageResultsEnrichmentSurvival, 278,

281
StageResultsMeans, 278, 281
StageResultsMultiArmMeans, 278, 282
StageResultsMultiArmRates, 278, 284
StageResultsMultiArmSurvival, 278, 285
StageResultsRates, 278, 286
StageResultsSurvival, 278, 287
summary(), 44, 49, 51, 53, 55, 60, 64, 66, 67,

70, 73, 75, 78, 86, 94, 96, 99, 102,
104, 108, 117, 119, 121, 125, 131,
136, 140, 144, 150, 156, 160, 164,
170, 178, 253

summary.AnalysisResults, 288
summary.Dataset, 289
summary.ParameterSet, 290
summary.TrialDesignSet, 292
SummaryFactory, 288, 289, 291, 292, 293

t, 293
t,FieldSet-method, 293
test_plan_section, 295
testInstalledPackage, 294
testPackage, 294
thetaH0, 223, 234
TrialDesign, 25, 26, 65, 67, 70, 73, 295
TrialDesignCharacteristics, 26, 64, 296
TrialDesignConditionalDunnett, 295, 297
TrialDesignFisher, 295, 298
TrialDesignGroupSequential, 295, 299
TrialDesignInverseNormal, 295, 300
TrialDesignPlan, 27, 99, 101, 104, 108, 116,

119, 121, 125, 302
TrialDesignPlanCountData, 302
TrialDesignPlanMeans, 302, 304
TrialDesignPlanRates, 302, 306
TrialDesignPlanSurvival, 302, 307

326 INDEX

TrialDesignSet, 28, 75, 183, 187, 310

utilitiesForPiecewiseExponentialDistribution,
311

utilitiesForSurvivalTrials, 313

write.table, 314–316
writeDataset, 314
writeDataset(), 254, 255, 315, 316
writeDatasets, 315
writeDatasets(), 254, 255, 315

	AccrualTime
	AnalysisResults
	AnalysisResultsConditionalDunnett
	AnalysisResultsEnrichment
	AnalysisResultsEnrichmentFisher
	AnalysisResultsEnrichmentInverseNormal
	AnalysisResultsFisher
	AnalysisResultsGroupSequential
	AnalysisResultsInverseNormal
	AnalysisResultsMultiArm
	AnalysisResultsMultiArmFisher-class
	AnalysisResultsMultiArmInverseNormal
	AnalysisResultsMultiHypotheses
	as.data.frame.AnalysisResults
	as.data.frame.ParameterSet
	as.data.frame.PowerAndAverageSampleNumberResult
	as.data.frame.StageResults
	as.data.frame.TrialDesign
	as.data.frame.TrialDesignCharacteristics
	as.data.frame.TrialDesignPlan
	as.data.frame.TrialDesignSet
	as.matrix.FieldSet
	as251Normal
	as251StudentT
	ClosedCombinationTestResults
	ConditionalPowerResults
	ConditionalPowerResultsEnrichmentMeans
	ConditionalPowerResultsEnrichmentRates
	ConditionalPowerResultsMeans
	ConditionalPowerResultsRates
	ConditionalPowerResultsSurvival
	dataEnrichmentMeans
	dataEnrichmentMeansStratified
	dataEnrichmentRates
	dataEnrichmentRatesStratified
	dataEnrichmentSurvival
	dataEnrichmentSurvivalStratified
	dataMeans
	dataMultiArmMeans
	dataMultiArmRates
	dataMultiArmSurvival
	dataRates
	Dataset
	DatasetMeans
	DatasetRates
	DatasetSurvival
	dataSurvival
	EventProbabilities
	FieldSet
	getAccrualTime
	getAnalysisResults
	getClosedCombinationTestResults
	getClosedConditionalDunnettTestResults
	getConditionalPower
	getConditionalRejectionProbabilities
	getData
	getDataset
	getDesignCharacteristics
	getDesignConditionalDunnett
	getDesignFisher
	getDesignGroupSequential
	getDesignInverseNormal
	getDesignSet
	getEventProbabilities
	getFinalConfidenceInterval
	getFinalPValue
	getGroupSequentialProbabilities
	getLambdaStepFunction
	getLogLevel
	getLongFormat
	getNumberOfSubjects
	getObservedInformationRates
	getOutputFormat
	getParameterCaption
	getParameterName
	getPerformanceScore
	getPiecewiseSurvivalTime
	getPlotSettings
	getPowerAndAverageSampleNumber
	getPowerCounts
	getPowerMeans
	getPowerRates
	getPowerSurvival
	getRawData
	getRepeatedConfidenceIntervals
	getRepeatedPValues
	getSampleSizeCounts
	getSampleSizeMeans
	getSampleSizeRates
	getSampleSizeSurvival
	getSimulationEnrichmentMeans
	getSimulationEnrichmentRates
	getSimulationEnrichmentSurvival
	getSimulationMeans
	getSimulationMultiArmMeans
	getSimulationMultiArmRates
	getSimulationMultiArmSurvival
	getSimulationRates
	getSimulationSurvival
	getStageResults
	getTestActions
	getWideFormat
	kable
	kable.ParameterSet
	knit_print.ParameterSet
	knit_print.SummaryFactory
	length.TrialDesignSet
	mvnprd
	mvstud
	names.AnalysisResults
	names.FieldSet
	names.SimulationResults
	names.StageResults
	names.TrialDesignSet
	NumberOfSubjects
	ParameterSet
	param_accrualIntensity
	param_accrualIntensityType
	param_accrualIntensity_counts
	param_accrualTime
	param_accrualTime_counts
	param_activeArms
	param_adaptations
	param_allocationRatioPlanned
	param_allocationRatioPlanned_sampleSize
	param_alpha
	param_alternative
	param_alternative_simulation
	param_beta
	param_bindingFutility
	param_calcEventsFunction
	param_calcSubjectsFunction
	param_conditionalPower
	param_conditionalPowerSimulation
	param_dataInput
	param_design
	param_design_with_default
	param_digits
	param_directionUpper
	param_dropoutRate1
	param_dropoutRate2
	param_dropoutTime
	param_effectList
	param_effectMatrix
	param_effectMeasure
	param_epsilonValue
	param_eventTime
	param_fixedExposureTime_counts
	param_followUpTime_counts
	param_gED50
	param_grid
	param_groups
	param_hazardRatio
	param_includeAllParameters
	param_informationEpsilon
	param_informationRates
	param_intersectionTest_Enrichment
	param_intersectionTest_MultiArm
	param_kappa
	param_kMax
	param_lambda1
	param_lambda1_counts
	param_lambda2
	param_lambda2_counts
	param_lambda_counts
	param_legendPosition
	param_maxInformation
	param_maxNumberOfEventsPerStage
	param_maxNumberOfIterations
	param_maxNumberOfSubjects
	param_maxNumberOfSubjectsPerStage
	param_maxNumberOfSubjects_survival
	param_median1
	param_median2
	param_minNumberOfEventsPerStage
	param_minNumberOfSubjectsPerStage
	param_niceColumnNamesEnabled
	param_nMax
	param_normalApproximation
	param_nPlanned
	param_overdispersion_counts
	param_palette
	param_pi1_rates
	param_pi1_survival
	param_pi2_rates
	param_pi2_survival
	param_piecewiseSurvivalTime
	param_plannedEvents
	param_plannedSubjects
	param_plotPointsEnabled
	param_plotSettings
	param_populations
	param_rValue
	param_seed
	param_selectArmsFunction
	param_selectPopulationsFunction
	param_showSource
	param_showStatistics
	param_sided
	param_slope
	param_stage
	param_stageResults
	param_stDev
	param_stDevH1
	param_stDevSimulation
	param_stratifiedAnalysis
	param_successCriterion
	param_theta
	param_thetaH0
	param_thetaH1
	param_theta_counts
	param_three_dots
	param_three_dots_plot
	param_threshold
	param_tolerance
	param_typeOfComputation
	param_typeOfDesign
	param_typeOfSelection
	param_typeOfShape
	param_userAlphaSpending
	param_varianceOption
	PerformanceScore
	PiecewiseSurvivalTime
	plot.AnalysisResults
	plot.Dataset
	plot.EventProbabilities
	plot.NumberOfSubjects
	plot.ParameterSet
	plot.SimulationResults
	plot.StageResults
	plot.SummaryFactory
	plot.TrialDesign
	plot.TrialDesignPlan
	plot.TrialDesignSet
	PlotSettings
	plotTypes
	PowerAndAverageSampleNumberResult
	print.Dataset
	print.FieldSet
	print.ParameterSet
	print.SimulationResults
	print.SummaryFactory
	print.TrialDesignCharacteristics
	printCitation
	rawDataTwoArmNormal
	rcmd
	readDataset
	readDatasets
	resetLogLevel
	rpact
	setLogLevel
	setOutputFormat
	SimulationResults
	SimulationResultsEnrichmentMeans
	SimulationResultsEnrichmentRates
	SimulationResultsEnrichmentSurvival
	SimulationResultsMeans
	SimulationResultsMultiArmMeans
	SimulationResultsMultiArmRates
	SimulationResultsMultiArmSurvival
	SimulationResultsRates
	SimulationResultsSurvival
	StageResults
	StageResultsEnrichmentMeans
	StageResultsEnrichmentRates
	StageResultsEnrichmentSurvival
	StageResultsMeans
	StageResultsMultiArmMeans
	StageResultsMultiArmRates
	StageResultsMultiArmSurvival
	StageResultsRates
	StageResultsSurvival
	summary.AnalysisResults
	summary.Dataset
	summary.ParameterSet
	summary.TrialDesignSet
	SummaryFactory
	t,FieldSet-method
	testPackage
	test_plan_section
	TrialDesign
	TrialDesignCharacteristics
	TrialDesignConditionalDunnett
	TrialDesignFisher
	TrialDesignGroupSequential
	TrialDesignInverseNormal
	TrialDesignPlan
	TrialDesignPlanCountData
	TrialDesignPlanMeans
	TrialDesignPlanRates
	TrialDesignPlanSurvival
	TrialDesignSet
	utilitiesForPiecewiseExponentialDistribution
	utilitiesForSurvivalTrials
	writeDataset
	writeDatasets
	[,TrialDesignSet-method
	Index

