
Package ‘rpact’
November 15, 2022

Title Confirmatory Adaptive Clinical Trial Design and Analysis

Version 3.3.2

Date 2022-11-10

Description Design and analysis of confirmatory adaptive clinical trials with continuous, bi-
nary, and survival endpoints according to the methods described in the monograph by Wass-
mer and Brannath (2016) <doi:10.1007/978-3-319-32562-0>. This includes classical group se-
quential as well as multi-stage adaptive hypotheses tests that are based on the combination test-
ing principle.

License LGPL-3

Encoding UTF-8

LazyData true

URL https://www.rpact.org, https://www.rpact.com, https:
//github.com/rpact-com/rpact

BugReports https://github.com/rpact-com/rpact/issues

Language en-US

Depends R (>= 3.5.0)

Imports methods,
stats,
utils,
graphics,
tools,
Rcpp (>= 1.0.3)

LinkingTo Rcpp

SystemRequirements C++11

Suggests parallel,
ggplot2 (>= 2.2.0),
testthat (>= 3.0.0),
mnormt (>= 1.5-7),
knitr (>= 1.19),
rmarkdown (>= 1.10)

VignetteBuilder knitr, rmarkdown

RoxygenNote 7.2.1

Roxygen list(markdown = TRUE)

Config/testthat/edition 3

1

https://doi.org/10.1007/978-3-319-32562-0
https://www.rpact.org
https://www.rpact.com
https://github.com/rpact-com/rpact
https://github.com/rpact-com/rpact
https://github.com/rpact-com/rpact/issues

2

Config/testthat/parallel true

Config/testthat/start-first *analysis*

Collate 'RcppExports.R'
'f_logger.R'
'f_core_constants.R'
'f_core_utilities.R'
'f_core_assertions.R'
'f_analysis_utilities.R'
'f_parameter_set_utilities.R'
'class_core_parameter_set.R'
'class_core_plot_settings.R'
'f_core_plot.R'
'class_design.R'
'f_analysis_base.R'
'class_analysis_dataset.R'
'class_analysis_stage_results.R'
'class_analysis_results.R'
'class_time.R'
'class_design_set.R'
'f_design_utilities.R'
'class_design_plan.R'
'class_design_power_and_asn.R'
'class_event_probabilities.R'
'f_simulation_utilities.R'
'f_simulation_base_survival.R'
'class_simulation_results.R'
'class_summary.R'
'data.R'
'f_analysis_base_means.R'
'f_analysis_base_rates.R'
'f_analysis_base_survival.R'
'f_analysis_enrichment.R'
'f_analysis_enrichment_means.R'
'f_analysis_enrichment_rates.R'
'f_analysis_enrichment_survival.R'
'f_analysis_multiarm.R'
'f_analysis_multiarm_means.R'
'f_analysis_multiarm_rates.R'
'f_analysis_multiarm_survival.R'
'f_core_output_formats.R'
'f_design_fisher_combination_test.R'
'f_design_group_sequential.R'
'f_design_sample_size_calculator.R'
'f_quality_assurance.R'
'f_simulation_base_means.R'
'f_simulation_base_rates.R'
'f_simulation_enrichment.R'
'f_simulation_enrichment_means.R'
'f_simulation_enrichment_rates.R'
'f_simulation_enrichment_survival.R'
'f_simulation_multiarm.R'
'f_simulation_multiarm_means.R'

R topics documented: 3

'f_simulation_multiarm_rates.R'
'f_simulation_multiarm_survival.R'
'parameter_descriptions.R'
'pkgname.R'

R topics documented:
AccrualTime . 8
AnalysisResults . 8
AnalysisResultsConditionalDunnett . 8
AnalysisResultsEnrichment . 9
AnalysisResultsEnrichmentInverseNormal . 9
AnalysisResultsFisher . 9
AnalysisResultsGroupSequential . 10
AnalysisResultsInverseNormal . 10
AnalysisResultsMultiArm . 10
AnalysisResultsMultiArmFisher . 11
AnalysisResultsMultiArmInverseNormal . 11
AnalysisResultsMultiHypotheses . 11
as.data.frame.AnalysisResults . 12
as.data.frame.ParameterSet . 12
as.data.frame.PowerAndAverageSampleNumberResult 13
as.data.frame.StageResults . 14
as.data.frame.TrialDesign . 15
as.data.frame.TrialDesignCharacteristics . 16
as.data.frame.TrialDesignPlan . 17
as.data.frame.TrialDesignSet . 18
as.matrix.FieldSet . 19
ClosedCombinationTestResults . 19
ConditionalPowerResults . 20
dataEnrichmentMeans . 20
dataEnrichmentMeansStratified . 21
dataEnrichmentRates . 21
dataEnrichmentRatesStratified . 21
dataEnrichmentSurvival . 22
dataEnrichmentSurvivalStratified . 22
dataMeans . 22
dataMultiArmMeans . 23
dataMultiArmRates . 23
dataMultiArmSurvival . 23
dataRates . 24
Dataset . 24
DatasetMeans . 25
DatasetRates . 25
DatasetSurvival . 26
dataSurvival . 26
EventProbabilities . 27
FieldSet . 27
getAccrualTime . 27
getAnalysisResults . 30
getClosedCombinationTestResults . 35
getClosedConditionalDunnettTestResults . 36

4 R topics documented:

getConditionalPower . 38
getConditionalRejectionProbabilities . 40
getData . 41
getDataset . 42
getDesignCharacteristics . 47
getDesignConditionalDunnett . 49
getDesignFisher . 50
getDesignGroupSequential . 52
getDesignInverseNormal . 55
getDesignSet . 58
getEventProbabilities . 60
getFinalConfidenceInterval . 62
getFinalPValue . 64
getGroupSequentialProbabilities . 65
getLambdaStepFunction . 67
getLogLevel . 67
getLongFormat . 68
getNumberOfSubjects . 68
getObservedInformationRates . 70
getOutputFormat . 71
getParameterCaption . 73
getParameterName . 73
getPiecewiseSurvivalTime . 74
getPlotSettings . 76
getPowerAndAverageSampleNumber . 77
getPowerMeans . 78
getPowerRates . 81
getPowerSurvival . 83
getRawData . 88
getRepeatedConfidenceIntervals . 90
getRepeatedPValues . 92
getSampleSizeMeans . 93
getSampleSizeRates . 95
getSampleSizeSurvival . 97
getSimulatedRejectionsDelayedResponse . 103
getSimulationEnrichmentMeans . 103
getSimulationEnrichmentRates . 108
getSimulationEnrichmentSurvival . 112
getSimulationMeans . 116
getSimulationMultiArmMeans . 121
getSimulationMultiArmRates . 127
getSimulationMultiArmSurvival . 131
getSimulationRates . 135
getSimulationSurvival . 141
getStageResults . 150
getTestActions . 152
getWideFormat . 153
kable . 154
kable.ParameterSet . 154
length.TrialDesignSet . 155
names.AnalysisResults . 155
names.FieldSet . 156

R topics documented: 5

names.SimulationResults . 156
names.StageResults . 157
names.TrialDesignSet . 157
NumberOfSubjects . 158
ParameterSet . 158
param_accrualIntensity . 158
param_accrualIntensityType . 158
param_accrualTime . 159
param_activeArms . 159
param_adaptations . 159
param_allocationRatioPlanned . 159
param_allocationRatioPlanned_sampleSize . 160
param_alpha . 160
param_alternative . 160
param_alternative_simulation . 161
param_beta . 161
param_bindingFutility . 161
param_calcEventsFunction . 162
param_calcSubjectsFunction . 162
param_conditionalPower . 162
param_conditionalPowerSimulation . 163
param_dataInput . 163
param_design . 163
param_design_with_default . 164
param_digits . 164
param_directionUpper . 164
param_dropoutRate1 . 164
param_dropoutRate2 . 165
param_dropoutTime . 165
param_effectList . 165
param_effectMatrix . 165
param_effectMeasure . 166
param_epsilonValue . 166
param_eventTime . 166
param_gED50 . 166
param_grid . 167
param_groups . 167
param_hazardRatio . 167
param_includeAllParameters . 168
param_informationEpsilon . 168
param_informationRates . 168
param_intersectionTest_Enrichment . 169
param_intersectionTest_MultiArm . 169
param_kappa . 169
param_kMax . 170
param_lambda1 . 170
param_lambda2 . 170
param_legendPosition . 171
param_maxInformation . 171
param_maxNumberOfEventsPerStage . 171
param_maxNumberOfIterations . 172
param_maxNumberOfSubjects . 172

6 R topics documented:

param_maxNumberOfSubjectsPerStage . 172
param_maxNumberOfSubjects_survival . 173
param_median1 . 173
param_median2 . 173
param_minNumberOfEventsPerStage . 174
param_minNumberOfSubjectsPerStage . 174
param_niceColumnNamesEnabled . 174
param_nMax . 175
param_normalApproximation . 175
param_nPlanned . 175
param_palette . 176
param_pi1_rates . 176
param_pi1_survival . 176
param_pi2_rates . 176
param_pi2_survival . 177
param_piecewiseSurvivalTime . 177
param_plannedEvents . 177
param_plannedSubjects . 178
param_plotPointsEnabled . 178
param_plotSettings . 178
param_populations . 179
param_rValue . 179
param_seed . 179
param_selectArmsFunction . 179
param_selectPopulationsFunction . 180
param_showSource . 180
param_showStatistics . 180
param_sided . 181
param_slope . 181
param_stage . 181
param_stageResults . 181
param_stDev . 182
param_stDevH1 . 182
param_stDevSimulation . 182
param_stratifiedAnalysis . 183
param_successCriterion . 183
param_theta . 183
param_thetaH0 . 184
param_thetaH1 . 184
param_three_dots . 184
param_three_dots_plot . 185
param_threshold . 185
param_tolerance . 185
param_typeOfComputation . 186
param_typeOfDesign . 186
param_typeOfSelection . 186
param_typeOfShape . 187
param_userAlphaSpending . 187
param_varianceOption . 188
PiecewiseSurvivalTime . 188
plot.AnalysisResults . 188
plot.Dataset . 191

R topics documented: 7

plot.EventProbabilities . 192
plot.NumberOfSubjects . 194
plot.ParameterSet . 196
plot.SimulationResults . 197
plot.StageResults . 199
plot.SummaryFactory . 202
plot.TrialDesign . 202
plot.TrialDesignPlan . 205
plot.TrialDesignSet . 207
PlotSettings . 209
plotTypes . 210
PowerAndAverageSampleNumberResult . 211
print.Dataset . 212
print.FieldSet . 212
print.ParameterSet . 213
print.SimulationResults . 213
printCitation . 214
rawDataTwoArmNormal . 214
rcmd . 215
readDataset . 216
readDatasets . 218
resetLogLevel . 219
rpact . 220
setLogLevel . 221
setOutputFormat . 222
SimulationResults . 223
SimulationResultsEnrichmentMeans . 224
SimulationResultsEnrichmentRates . 224
SimulationResultsEnrichmentSurvival . 225
SimulationResultsMeans . 225
SimulationResultsMultiArmMeans . 225
SimulationResultsMultiArmRates . 226
SimulationResultsMultiArmSurvival . 226
SimulationResultsRates . 226
SimulationResultsSurvival . 227
StageResults . 227
StageResultsMeans . 228
StageResultsRates . 228
StageResultsSurvival . 229
summary.AnalysisResults . 230
summary.Dataset . 231
summary.ParameterSet . 232
summary.TrialDesignSet . 234
SummaryFactory . 235
t,FieldSet-method . 235
testPackage . 236
test_plan_section . 237
TrialDesign . 237
TrialDesignCharacteristics . 238
TrialDesignConditionalDunnett . 238
TrialDesignFisher . 239
TrialDesignGroupSequential . 240

8 AnalysisResultsConditionalDunnett

TrialDesignInverseNormal . 242
TrialDesignPlan . 244
TrialDesignPlanMeans . 244
TrialDesignPlanRates . 245
TrialDesignPlanSurvival . 245
TrialDesignSet . 245
utilitiesForPiecewiseExponentialDistribution . 246
utilitiesForSurvivalTrials . 248
writeDataset . 249
writeDatasets . 250
[,TrialDesignSet-method . 252

Index 253

AccrualTime Accrual Time

Description

Class for the definition of accrual time and accrual intensity.

Details

AccrualTime is a class for the definition of accrual time and accrual intensity.

AnalysisResults Basic Class for Analysis Results

Description

A basic class for analysis results.

Details

AnalysisResults is the basic class for

• AnalysisResultsFisher,
• AnalysisResultsGroupSequential, and
• AnalysisResultsInverseNormal.

AnalysisResultsConditionalDunnett

Analysis Results Multi-Arm Conditional Dunnett

Description

Class for multi-arm analysis results based on a conditional Dunnett test design.

Details

This object cannot be created directly; use getAnalysisResults() with suitable arguments to
create the multi-arm analysis results of a conditional Dunnett test design.

AnalysisResultsEnrichment 9

AnalysisResultsEnrichment

Basic Class for Analysis Results Enrichment

Description

A basic class for enrichment analysis results.

Details

AnalysisResultsEnrichment is the basic class for

• AnalysisResultsEnrichmentFisher and

• AnalysisResultsEnrichmentInverseNormal.

AnalysisResultsEnrichmentInverseNormal

Analysis Results Enrichment Inverse Normal

Description

Class for enrichment analysis results based on a inverse normal design.

Details

This object cannot be created directly; use getAnalysisResults() with suitable arguments to
create the enrichment analysis results of an inverse normal design.

AnalysisResultsFisher Analysis Results Fisher

Description

Class for analysis results based on a Fisher combination test design.

Details

This object cannot be created directly; use getAnalysisResults() with suitable arguments to
create the analysis results of a Fisher combination test design.

10 AnalysisResultsMultiArm

AnalysisResultsGroupSequential

Analysis Results Group Sequential

Description

Class for analysis results results based on a group sequential design.

Details

This object cannot be created directly; use getAnalysisResults() with suitable arguments to
create the analysis results of a group sequential design.

AnalysisResultsInverseNormal

Analysis Results Inverse Normal

Description

Class for analysis results results based on an inverse normal design.

Details

This object cannot be created directly; use getAnalysisResults() with suitable arguments to
create the analysis results of a inverse normal design.

AnalysisResultsMultiArm

Basic Class for Analysis Results Multi-Arm

Description

A basic class for multi-arm analysis results.

Details

AnalysisResultsMultiArm is the basic class for

• AnalysisResultsMultiArmFisher,

• AnalysisResultsMultiArmInverseNormal, and

• AnalysisResultsConditionalDunnett.

AnalysisResultsMultiArmFisher 11

AnalysisResultsMultiArmFisher

Analysis Results Multi-Arm Fisher

Description

Class for multi-arm analysis results based on a Fisher combination test design.

Class for multi-arm analysis results based on a Fisher combination test design.

Details

This object cannot be created directly; use getAnalysisResults() with suitable arguments to
create the multi-arm analysis results of a Fisher combination test design.

This object cannot be created directly; use getAnalysisResults() with suitable arguments to
create the multi-arm analysis results of a Fisher combination test design.

AnalysisResultsMultiArmInverseNormal

Analysis Results Multi-Arm Inverse Normal

Description

Class for multi-arm analysis results based on a inverse normal design.

Details

This object cannot be created directly; use getAnalysisResults() with suitable arguments to
create the multi-arm analysis results of an inverse normal design.

AnalysisResultsMultiHypotheses

Basic Class for Analysis Results Multi-Hypotheses

Description

A basic class for multi-hypotheses analysis results.

Details

AnalysisResultsMultiHypotheses is the basic class for

• AnalysisResultsMultiArm and

• AnalysisResultsEnrichment.

12 as.data.frame.ParameterSet

as.data.frame.AnalysisResults

Coerce AnalysisResults to a Data Frame

Description

Returns the AnalysisResults object as data frame.

Usage

S3 method for class 'AnalysisResults'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
...,
niceColumnNamesEnabled = FALSE

)

Arguments

x An AnalysisResults object created by getAnalysisResults().
... Ensures that all arguments (starting from the "...") are to be named and that a

warning will be displayed if unknown arguments are passed.

Details

Coerces the analysis results to a data frame.

Value

Returns a data.frame.

as.data.frame.ParameterSet

Coerce Parameter Set to a Data Frame

Description

Returns the ParameterSet as data frame.

Usage

S3 method for class 'ParameterSet'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
...

)

as.data.frame.PowerAndAverageSampleNumberResult 13

Arguments

x A FieldSet object.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the parameter set to a data frame.

Value

Returns a data.frame.

as.data.frame.PowerAndAverageSampleNumberResult

Coerce Power And Average Sample Number Result to a Data Frame

Description

Returns the PowerAndAverageSampleNumberResult as data frame.

Usage

S3 method for class 'PowerAndAverageSampleNumberResult'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
...

)

Arguments

x A PowerAndAverageSampleNumberResult object.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

14 as.data.frame.StageResults

Details

Coerces the PowerAndAverageSampleNumberResult object to a data frame.

Value

Returns a data.frame.

Examples

data <- as.data.frame(getPowerAndAverageSampleNumber(getDesignGroupSequential()))
head(data)
dim(data)

as.data.frame.StageResults

Coerce Stage Results to a Data Frame

Description

Returns the StageResults as data frame.

Usage

S3 method for class 'StageResults'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
type = 1,
...

)

Arguments

x A StageResults object.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the stage results to a data frame.

as.data.frame.TrialDesign 15

Value

Returns a data.frame.

as.data.frame.TrialDesign

Coerce TrialDesign to a Data Frame

Description

Returns the TrialDesign as data frame.

Usage

S3 method for class 'TrialDesign'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
...

)

Arguments

x A TrialDesign object.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Each element of the TrialDesign is converted to a column in the data frame.

Value

Returns a data.frame.

Examples

as.data.frame(getDesignGroupSequential())

16 as.data.frame.TrialDesignCharacteristics

as.data.frame.TrialDesignCharacteristics

Coerce TrialDesignCharacteristics to a Data Frame

Description

Returns the TrialDesignCharacteristics as data frame.

Usage

S3 method for class 'TrialDesignCharacteristics'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
...

)

Arguments

x A TrialDesignCharacteristics object.

niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Each element of the TrialDesignCharacteristics is converted to a column in the data frame.

Value

Returns a data.frame.

Examples

as.data.frame(getDesignCharacteristics(getDesignGroupSequential()))

as.data.frame.TrialDesignPlan 17

as.data.frame.TrialDesignPlan

Coerce Trial Design Plan to a Data Frame

Description

Returns the TrialDesignPlan as data frame.

Usage

S3 method for class 'TrialDesignPlan'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
...

)

Arguments

x A TrialDesignPlan object.

niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the design plan to a data frame.

Value

Returns a data.frame.

Examples

as.data.frame(getSampleSizeMeans())

18 as.data.frame.TrialDesignSet

as.data.frame.TrialDesignSet

Coerce Trial Design Set to a Data Frame

Description

Returns the TrialDesignSet as data frame.

Usage

S3 method for class 'TrialDesignSet'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
addPowerAndAverageSampleNumber = FALSE,
theta = seq(-1, 1, 0.02),
nMax = NA_integer_,
...

)

Arguments

x A TrialDesignSet object.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

addPowerAndAverageSampleNumber

If TRUE, power and average sample size will be added to data frame, default is
FALSE.

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

nMax The maximum sample size. Must be a positive integer of length 1.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the design set to a data frame.

Value

Returns a data.frame.

as.matrix.FieldSet 19

Examples

designSet <- getDesignSet(design = getDesignGroupSequential(), alpha = c(0.01, 0.05))
as.data.frame(designSet)

as.matrix.FieldSet Coerce Field Set to a Matrix

Description

Returns the FrameSet as matrix.

Usage

S3 method for class 'FieldSet'
as.matrix(x, ..., enforceRowNames = TRUE, niceColumnNamesEnabled = TRUE)

Arguments

x A FieldSet object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

enforceRowNames

If TRUE, row names will be created depending on the object type, default is TRUE.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

Details

Coerces the frame set to a matrix.

Value

Returns a matrix.

ClosedCombinationTestResults

Analysis Results Closed Combination Test

Description

Class for multi-arm analysis results based on a closed combination test.

Details

This object cannot be created directly; use getAnalysisResults() with suitable arguments to
create the multi-arm analysis results of a closed combination test design.

20 dataEnrichmentMeans

ConditionalPowerResults

Conditional Power Results

Description

Class for conditional power calculations

Details

This object cannot be created directly; use getConditionalPower() with suitable arguments to
create the results of a group sequential or a combination test design.

Fields

nPlanned The new sample size planned for each of the subsequent stages.

allocationRatioPlanned The planned allocation ratio n1/n2 for a two treatment groups design,
default is 1. Is a numeric vector of length 1.

iterations The number of iterations used for simulations. Is an integer of length 1.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Logical. Describes if the power for Fisher’s combination test has been simulated. Only
applicable when using Fisher designs.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
kMax.

thetaH1 For survival designs, refers to the hazard ratio. Is a numeric vector of length 1.

assumedStDev The assumed standard deviation. Is a numeric vector of length 1.

dataEnrichmentMeans Enrichment Dataset of Means

Description

A dataset containing the sample sizes, means, and standard deviations of two groups. Use getDataset(dataEnrichmentMeans)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentMeans

Format

A data.frame object.

dataEnrichmentMeansStratified 21

dataEnrichmentMeansStratified

Stratified Enrichment Dataset of Means

Description

A dataset containing the sample sizes, means, and standard deviations of two groups. Use getDataset(dataEnrichmentMeansStratified)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentMeansStratified

Format

A data.frame object.

dataEnrichmentRates Enrichment Dataset of Rates

Description

A dataset containing the sample sizes and events of two groups. Use getDataset(dataEnrichmentRates)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentRates

Format

A data.frame object.

dataEnrichmentRatesStratified

Stratified Enrichment Dataset of Rates

Description

A dataset containing the sample sizes and events of two groups. Use getDataset(dataEnrichmentRatesStratified)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentRatesStratified

Format

A data.frame object.

22 dataMeans

dataEnrichmentSurvival

Enrichment Dataset of Survival Data

Description

A dataset containing the log-rank statistics, events, and allocation ratios of two groups. Use getDataset(dataEnrichmentSurvival)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentSurvival

Format

A data.frame object.

dataEnrichmentSurvivalStratified

Stratified Enrichment Dataset of Survival Data

Description

A dataset containing the log-rank statistics, events, and allocation ratios of two groups. Use getDataset(dataEnrichmentSurvivalStratified)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentSurvivalStratified

Format

A data.frame object.

dataMeans One-Arm Dataset of Means

Description

A dataset containing the sample sizes, means, and standard deviations of one group. Use getDataset(dataMeans)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMeans

Format

A data.frame object.

dataMultiArmMeans 23

dataMultiArmMeans Multi-Arm Dataset of Means

Description

A dataset containing the sample sizes, means, and standard deviations of four groups. Use getDataset(dataMultiArmMeans)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMultiArmMeans

Format

A data.frame object.

dataMultiArmRates Multi-Arm Dataset of Rates

Description

A dataset containing the sample sizes and events of three groups. Use getDataset(dataMultiArmRates)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMultiArmRates

Format

A data.frame object.

dataMultiArmSurvival Multi-Arm Dataset of Survival Data

Description

A dataset containing the log-rank statistics, events, and allocation ratios of three groups. Use
getDataset(dataMultiArmSurvival) to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMultiArmSurvival

Format

A data.frame object.

24 Dataset

dataRates One-Arm Dataset of Rates

Description

A dataset containing the sample sizes and events of one group. Use getDataset(dataRates) to
create a dataset object that can be processed by getAnalysisResults().

Usage

dataRates

Format

A data.frame object.

Dataset Dataset

Description

Basic class for datasets.

Details

Dataset is the basic class for

• DatasetMeans,

• DatasetRates, and

• DatasetSurvival.

This basic class contains the fields stages and groups and several commonly used functions.

Fields

stages The stage numbers of the trial. Is an integer vector of length kMax.

groups The group numbers. Is an integer vector of length number of stages times number of
groups.

DatasetMeans 25

DatasetMeans Dataset of Means

Description

Class for a dataset of means.

Details

This object cannot be created directly; better use getDataset() with suitable arguments to create
a dataset of means.

Fields

groups The group numbers. Is an integer vector of length number of stages times number of
groups.

stages The stage numbers of the trial. Is an integer vector of length kMax.

sampleSizes The sample sizes for each group and stage. Is an integer vector of length number of
stages times number of groups.

means The means. Is a numeric vector of length number of stages times number of groups.

stDevs The standard deviations. Is a numeric vector of length number of stages times number of
groups.

DatasetRates Dataset of Rates

Description

Class for a dataset of rates.

Details

This object cannot be created directly; better use getDataset() with suitable arguments to create
a dataset of rates.

Fields

groups The group numbers. Is an integer vector of length number of stages times number of
groups.

stages The stage numbers of the trial. Is an integer vector of length kMax.

sampleSizes The sample sizes for each group and stage. Is an integer vector of length number of
stages times number of groups.

events The events. Is an integer vector of length number of groups times number of stages.

overallSampleSizes The cumulative sample sizes. Is an integer vector of length number of
groups times number of stages.

overallEvents The cumulative events. Is an integer vector of length number of groups times
number of stages.

26 dataSurvival

DatasetSurvival Dataset of Survival Data

Description

Class for a dataset of survival data.

Details

This object cannot be created directly; better use getDataset() with suitable arguments to create
a dataset of survival data.

Fields

groups The group numbers. Is an integer vector of length number of stages times number of
groups.

stages The stage numbers of the trial. Is an integer vector of length kMax.

overallEvents The cumulative events.

overallAllocationRatios The cumulative allocations ratios.

overallLogRanks The overall logrank test statistics.

allocationRatios The allocation ratios.

logRanks The logrank test statistics.

dataSurvival One-Arm Dataset of Survival Data

Description

A dataset containing the log-rank statistics, events, and allocation ratios of one group. Use getDataset(dataSurvival)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataSurvival

Format

A data.frame object.

EventProbabilities 27

EventProbabilities Event Probabilities

Description

Class for the definition of event probabilities.

Details

EventProbabilities is a class for the definition of event probabilities.

Fields

overallEventProbabilities Deprecated field which will be removed in one of the next releases.
Use ’cumulativeEventProbabilities’ instead.

FieldSet Field Set

Description

Basic class for field sets.

Details

The field set implements basic functions for a set of fields.

getAccrualTime Get Accrual Time

Description

Returns an AccrualTime object that contains the accrual time and the accrual intensity.

Usage

getAccrualTime(
accrualTime = NA_real_,
...,
accrualIntensity = NA_real_,
accrualIntensityType = c("auto", "absolute", "relative"),
maxNumberOfSubjects = NA_real_

)

28 getAccrualTime

Arguments

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

maxNumberOfSubjects

The maximum number of subjects.

Value

Returns an AccrualTime object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.
accrualIntensity itself is a value or a vector (depending on the length of accrualtime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all ele-
ments in accrualIntensity are smaller than 1, accrualIntensity defines the *relative* intensity
how subjects enter the trial. For example, accrualIntensity = c(0.1, 0.2) specifies that in the
second accrual interval the intensity is doubled as compared to the first accrual interval. The actual
(absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects. Note
that the default is accrualIntensity = 0.1 meaning that the *absolute* accrual intensity will be
calculated.

getAccrualTime 29

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getNumberOfSubjects() for calculating the number of subjects at given time points.

Examples

Assume that in a trial the accrual after the first 6 months is doubled
and the total accrual time is 30 months.
Further assume that a total of 1000 subjects are entered in the trial.
The number of subjects to be accrued in the first 6 months and afterwards
is achieved through
getAccrualTime(accrualTime = c(0, 6, 30),

accrualIntensity = c(0.1, 0.2), maxNumberOfSubjects = 1000)

The same result is obtained via the list based definition
getAccrualTime(list(

"0 - <6" = 0.1,
"6 - <=30" = 0.2),
maxNumberOfSubjects = 1000)

Calculate the end of accrual at given absolute intensity:
getAccrualTime(accrualTime = c(0, 6),

accrualIntensity = c(18, 36), maxNumberOfSubjects = 1000)

Via the list based definition this is
getAccrualTime(list(

"0 - <6" = 18,
">=6" = 36),
maxNumberOfSubjects = 1000)

You can use an accrual time object in getSampleSizeSurvival() or
getPowerSurvival().
For example, if the maximum number of subjects and the follow up
time needs to be calculated for a given effect size:
accrualTime = getAccrualTime(accrualTime = c(0, 6, 30),

accrualIntensity = c(0.1, 0.2))
getSampleSizeSurvival(accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2)

Or if the power and follow up time needs to be calculated for given
number of events and subjects:
accrualTime = getAccrualTime(accrualTime = c(0, 6, 30),

accrualIntensity = c(0.1, 0.2), maxNumberOfSubjects = 110)
getPowerSurvival(accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2,
maxNumberOfEvents = 46)

How to show accrual time details

You can use a sample size or power object as argument for the function
getAccrualTime():

30 getAnalysisResults

sampleSize <-
getSampleSizeSurvival(accrualTime = c(0, 6), accrualIntensity = c(22, 53),

lambda2 = 0.05, hazardRatio = 0.8, followUpTime = 6)
sampleSize
accrualTime <- getAccrualTime(sampleSize)
accrualTime

getAnalysisResults Get Analysis Results

Description

Calculates and returns the analysis results for the specified design and data.

Usage

getAnalysisResults(
design,
dataInput,
...,
directionUpper = TRUE,
thetaH0 = NA_real_,
nPlanned = NA_real_,
allocationRatioPlanned = 1,
stage = NA_integer_,
maxInformation = NULL,
informationEpsilon = NULL

)

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

... Further arguments to be passed to methods (cf. separate functions in "See Also"
below), e.g.,

thetaH1 and assumedStDev or pi1, pi2 The assumed effect size or assumed
rates to calculate the conditional power. Depending on the type of dataset,
either thetaH1 (means and survival) or pi1, pi2 (rates) can be specified.
For testing means, an assumed standard deviation can be specified, default
is 1.

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.

getAnalysisResults 31

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

iterations Iterations for simulating the power for Fisher’s combination test.
If the power for more than one remaining stages is to be determined for
Fisher’s combination test, it is estimated via simulation with specified
iterations, the default is 1000.

seed Seed for simulating the power for Fisher’s combination test. See above,
default is a random seed.

intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple hypotheses. Five
options are available in multi-arm designs: "Dunnett", "Bonferroni",
"Simes", "Sidak", and "Hierarchical", default is "Dunnett". Four op-
tions are available in population enrichment designs: "SpiessensDebois"
(one subset only), "Bonferroni", "Simes", and "Sidak", default is "Simes".

varianceOption Defines the way to calculate the variance in multiple treat-
ment arms (> 2) or population enrichment designs for testing means. For
multiple arms, three options are available: "overallPooled", "pairwisePooled",
and "notPooled", default is "overallPooled". For enrichment designs,
the options are: "pooled", "pooledFromFull" (one subset only), and "notPooled",
default is "pooled".

thetaH1 and assumedStDevs or piTreatments, piControls The assumed ef-
fect size or assumed rates to calculate the conditional power in multi-arm
trials or enrichment designs. For survival designs, thetaH1 refers to the
hazard ratio. You can specify a value or a vector with elements referring
to the treatment arms or the sub-populations, respectively. If not specified,
the conditional power is calculated under the assumption of observed effect
sizes, standard deviations, rates, or hazard ratios.

stratifiedAnalysis For enrichment designs, typically a stratified analysis
should be chosen. For testing means and rates, also a non-stratified analysis
based on overall data can be performed. For survival data, only a stratified
analysis is possible (see Brannath et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

32 getAnalysisResults

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

stage The stage number (optional). Default: total number of existing stages in the data
input.

maxInformation Positive integer value specifying the maximum information.
informationEpsilon

Positive integer value specifying the absolute information epsilon, which de-
fines the maximum distance from the observed information to the maximum
information that causes the final analysis. Updates at the final analysis in case
the observed information at the final analysis is smaller ("under-running") than
the planned maximum information maxInformation, default is 0. Alternatively,
a floating-point number > 0 and < 1 can be specified to define a relative infor-
mation epsilon.

Details

Given a design and a dataset, at given stage the function calculates the test results (effect sizes, stage-
wise test statistics and p-values, overall p-values and test statistics, conditional rejection probability
(CRP), conditional power, Repeated Confidence Intervals (RCIs), repeated overall p-values, and
final stage p-values, median unbiased effect estimates, and final confidence intervals.

For designs with more than two treatments arms (multi-arm designs) or enrichment designs a closed
combination test is performed. That is, additionally the statistics to be used in a closed testing
procedure are provided.

The conditional power is calculated only if effect size and sample size is specified. Median unbiased
effect estimates and confidence intervals are calculated if a group sequential design or an inverse
normal combination test design was chosen, i.e., it is not applicable for Fisher’s p-value combination
test design. For the inverse normal combination test design with more than two stages, a warning
informs that the validity of the confidence interval is theoretically shown only if no sample size
change was performed.

A final stage p-value for Fisher’s combination test is calculated only if a two-stage design was
chosen. For Fisher’s combination test, the conditional power for more than one remaining stages is
estimated via simulation.

Final stage p-values, median unbiased effect estimates, and final confidence intervals are not calcu-
lated for multi-arm and enrichment designs.

Value

Returns an AnalysisResults object. The following generics (R generic functions) are available
for this result object:

• names to obtain the field names,

• print() to print the object,

getAnalysisResults 33

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Note on the dependency of mnormt

If intersectionTest = "Dunnett" or intersectionTest = "SpiessensDebois", or the design
is a conditional Dunnett design and the dataset is a multi-arm or enrichment dataset, rpact uses the
R package mnormt to calculate the analysis results.

See Also

• getObservedInformationRates() for recalculation the observed information rates.

Other analysis functions: getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(),
getTestActions()

Examples

Example 1 One-Sample t Test
Perform an analysis within a three-stage group sequential design with
O'Brien & Fleming boundaries and one-sample data with a continuous outcome
where H0: mu = 1.2 is to be tested

dsnGS <- getDesignGroupSequential()
dataMeans <- getDataset(

n = c(30, 30),
means = c(1.96, 1.76),
stDevs = c(1.92, 2.01))

getAnalysisResults(design = dsnGS, dataInput = dataMeans, thetaH0 = 1.2)

You can obtain the results when performing an inverse normal combination test
with these data by using the commands

dsnIN <- getDesignInverseNormal()
getAnalysisResults(design = dsnIN, dataInput = dataMeans, thetaH0 = 1.2)

Example 2 Use Function Approach with Time to Event Data
Perform an analysis within a use function approach according to an
O'Brien & Fleming type use function and survival data where
where H0: hazard ratio = 1 is to be tested. The events were observed
over time and maxInformation = 120, informationEpsilon = 5 specifies
that 116 > 120 - 5 observed events defines the final analysis.

https://cran.r-project.org/package=mnormt

34 getAnalysisResults

design <- getDesignGroupSequential(typeOfDesign = "asOF")
dataSurvival <- getDataset(
cumulativeEvents = c(33, 72, 116),
cumulativeLogRanks = c(1.33, 1.88, 1.902))
getAnalysisResults(design, dataInput = dataSurvival, maxInformation = 120,
informationEpsilon = 5)

Example 3 Multi-Arm Design
In a four-stage combination test design with O'Brien & Fleming boundaries
at the first stage the second treatment arm was dropped. With the Bonferroni
intersection test, the results together with the CRP, conditional power
(assuming a total of 40 subjects for each comparison and effect sizes 0.5
and 0.8 for treatment arm 1 and 3, respectively, and standard deviation 1.2),
RCIs and p-values of a closed adaptive test procedure are
obtained as follows with the given data (treatment arm 4 refers to the
reference group; displayed with summary and plot commands):

data <- getDataset(
n1 = c(22, 23),
n2 = c(21, NA),
n3 = c(20, 25),
n4 = c(25, 27),
means1 = c(1.63, 1.51),
means2 = c(1.4, NA),
means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = c(1.2, 1.4),
stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = c(1.02, 1.18))

design <- getDesignInverseNormal(kMax = 4)
x <- getAnalysisResults(design, dataInput = data, intersectionTest = "Bonferroni",

nPlanned = c(40, 40), thetaH1 = c(0.5, NA, 0.8), assumedStDevs = 1.2)
summary(x)
if (require(ggplot2)) plot(x, thetaRange = c(0, 0.8))

design <- getDesignConditionalDunnett(secondStageConditioning = FALSE)
y <- getAnalysisResults(design, dataInput = data,

nPlanned = 40, thetaH1 = c(0.5, NA, 0.8), assumedStDevs = 1.2, stage = 1)
summary(y)
if (require(ggplot2)) plot(y, thetaRange = c(0, 0.4))

Example 4 Enrichment Design
Perform an two-stage enrichment design analysis with O'Brien & Fleming boundaries
where one sub-population (S1) and a full population (F) are considered as primary
analysis sets. At interim, S1 is selected for further analysis and the sample
size is increased accordingly. With the Spiessens & Debois intersection test,
the results of a closed adaptive test procedure together with the CRP, repeated
RCIs and p-values are obtained as follows with the given data (displayed with
summary and plot commands):

design <- getDesignInverseNormal(kMax = 2, typeOfDesign = "OF")
dataS1 <- getDataset(

means1 = c(13.2, 12.8),
means2 = c(11.1, 10.8),
stDev1 = c(3.4, 3.3),

getClosedCombinationTestResults 35

stDev2 = c(2.9, 3.5),
n1 = c(21, 42),
n2 = c(19, 39))

dataNotS1 <- getDataset(
means1 = c(11.8, NA),
means2 = c(10.5, NA),
stDev1 = c(3.6, NA),
stDev2 = c(2.7, NA),
n1 = c(15, NA),
n2 = c(13, NA))

dataBoth <- getDataset(S1 = dataS1, R = dataNotS1)

x <- getAnalysisResults(design, dataInput = dataBoth,
intersectionTest = "SpiessensDebois",
varianceOption = "pooledFromFull",
stratifiedAnalysis = TRUE)

summary(x)
if (require(ggplot2)) plot(x, type = 2)

getClosedCombinationTestResults

Get Closed Combination Test Results

Description

Calculates and returns the results from the closed combination test in multi-arm and population
enrichment designs.

Usage

getClosedCombinationTestResults(stageResults)

Arguments

stageResults The results at given stage, obtained from getStageResults().

Value

Returns a ClosedCombinationTestResults object. The following generics (R generic functions)
are available for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

36 getClosedConditionalDunnettTestResults

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other analysis functions: getAnalysisResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(),
getTestActions()

Examples

In a four-stage combination test design with O'Brien & Fleming boundaries
at the first stage the second treatment arm was dropped. With the Bonferroni
intersection test, the results of a closed adaptive test procedure are
obtained as follows with the given data (treatment arm 4 refers to the
reference group):
data <- getDataset(

n1 = c(22, 23),
n2 = c(21, NA),
n3 = c(20, 25),
n4 = c(25, 27),
means1 = c(1.63, 1.51),
means2 = c(1.4, NA),
means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = c(1.2, 1.4),
stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = c(1.02, 1.18))

design <- getDesignInverseNormal(kMax = 4)
stageResults <- getStageResults(design, dataInput = data,

intersectionTest = "Bonferroni")
getClosedCombinationTestResults(stageResults)

getClosedConditionalDunnettTestResults

Get Closed Conditional Dunnett Test Results

Description

Calculates and returns the results from the closed conditional Dunnett test.

getClosedConditionalDunnettTestResults 37

Usage

getClosedConditionalDunnettTestResults(
stageResults,
...,
stage = stageResults$stage

)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

For performing the conditional Dunnett test the design must be defined through the function getDesignConditionalDunnett().
See Koenig et al. (2008) and Wassmer & Brannath (2016), chapter 11 for details of the test proce-
dure.

Value

Returns a ClosedCombinationTestResults object. The following generics (R generic functions)
are available for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getConditionalPower(),
getConditionalRejectionProbabilities(), getFinalConfidenceInterval(), getFinalPValue(),
getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

38 getConditionalPower

Examples

In a two-stage design a conditional Dunnett test should be performed
where the unconditional second stage p-values should be used for the
test decision.
At the first stage the second treatment arm was dropped. The results of
a closed conditionsal Dunnett test are obtained as follows with the given
data (treatment arm 4 refers to the reference group):
data <- getDataset(

n1 = c(22, 23),
n2 = c(21, NA),
n3 = c(20, 25),
n4 = c(25, 27),
means1 = c(1.63, 1.51),
means2 = c(1.4, NA),
means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = c(1.2, 1.4),
stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = c(1.02, 1.18))

For getting the results of the closed test procedure, use the following commands:
design <- getDesignConditionalDunnett(secondStageConditioning = FALSE)
stageResults <- getStageResults(design, dataInput = data)
getClosedConditionalDunnettTestResults(stageResults)

getConditionalPower Get Conditional Power

Description

Calculates and returns the conditional power.

Usage

getConditionalPower(stageResults, ..., nPlanned, allocationRatioPlanned = 1)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Further (optional) arguments to be passed:

thetaH1 and assumedStDevs or piTreatments, piControl The assumed ef-
fect size or assumed rates to calculate the conditional power in multi-arm
trials or enrichment designs. For survival designs, thetaH1 refers to the
hazard ratio. You can specify a value or a vector with elements referring to
the treatment arms or the sub-populations, respectively. For testing means,
an assumed standard deviation can be specified, default is 1.

iterations Iterations for simulating the power for Fisher’s combination test.
If the power for more than one remaining stages is to be determined for
Fisher’s combination test, it is estimated via simulation with specified
iterations, the default value is 10000.

getConditionalPower 39

seed Seed for simulating the power for Fisher’s combination test. See above,
default is a random seed.

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

Details

The conditional power is calculated only if the effect size and the sample size is specified.

For Fisher’s combination test, the conditional power for more than one remaining stages is estimated
via simulation.

Value

Returns a ConditionalPowerResults object. The following generics (R generic functions) are
available for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

plot.StageResults() or plot.AnalysisResults() for plotting the conditional power.

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalRejectionProbabilities(), getFinalConfidenceInterval(), getFinalPValue(),
getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

40 getConditionalRejectionProbabilities

Examples

data <- getDataset(
n1 = c(22, 13, 22, 13),
n2 = c(22, 11, 22, 11),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 1, 2.5),
stds1 = c(1, 2, 2, 1.3),
stds2 = c(1, 2, 2, 1.3))

stageResults <- getStageResults(
getDesignGroupSequential(kMax = 4),
dataInput = data, stage = 2, directionUpper = FALSE)

getConditionalPower(stageResults, thetaH1 = -0.4,
nPlanned = c(64, 64), assumedStDev = 1.5, allocationRatioPlanned = 3)

getConditionalRejectionProbabilities

Get Conditional Rejection Probabilities

Description

Calculates the conditional rejection probabilities (CRP) for given test results.

Usage

getConditionalRejectionProbabilities(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Further (optional) arguments to be passed:

iterations Iterations for simulating the conditional rejection probabilities for
Fisher’s combination test. For checking purposes, it can be estimated via
simulation with specified iterations.

seed Seed for simulating the conditional rejection probabilities for Fisher’s
combination test. See above, default is a random seed.

Details

The conditional rejection probability is the probability, under H0, to reject H0 in one of the subse-
quent (remaining) stages. The probability is calculated using the specified design. For testing rates
and the survival design, the normal approximation is used, i.e., it is calculated with the use of the
prototype case testing a mean for normally distributed data with known variance.

The conditional rejection probabilities are provided up to the specified stage.

For Fisher’s combination test, you can check the validity of the CRP calculation via simulation.

Value

Returns a numeric vector of length kMax or in case of multi-arm stage results a matrix (each col-
umn represents a stage, each row a comparison) containing the conditional rejection probabilities.

getData 41

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getFinalConfidenceInterval(), getFinalPValue(), getRepeatedConfidenceIntervals(),
getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Calculate CRP for a Fisher's combination test design with
two remaining stages and check the results by simulation.
design <- getDesignFisher(kMax = 4,

informationRates = c(0.1, 0.3, 0.8, 1), alpha = 0.01)
data <- getDataset(n = c(40, 40), events = c(20, 22))
sr <- getStageResults(design, data, thetaH0 = 0.4)
getConditionalRejectionProbabilities(sr)
getConditionalRejectionProbabilities(sr, simulateCRP = TRUE,

seed = 12345, iterations = 10000)

getData Get Simulation Data

Description

Returns the aggregated simulation data.

Usage

getData(x)

getData.SimulationResults(x)

Arguments

x A SimulationResults object created by getSimulationMeans(),
getSimulationRates(), getSimulationSurvival(), getSimulationMultiArmMeans(),
getSimulationMultiArmRates(), or getSimulationMultiArmSurvival().

Details

This function can be used to get the aggregated simulated data from an simulation results object,
for example, obtained by getSimulationSurvival(). In this case, the data frame contains the
following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. pi1: The assumed or derived event rate in the treatment group.

4. pi2: The assumed or derived event rate in the control group.

5. hazardRatio: The hazard ratio under consideration (if available).

6. analysisTime: The analysis time.

42 getDataset

7. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

8. eventsPerStage1: The observed number of events per stage in treatment group 1.

9. eventsPerStage2: The observed number of events per stage in treatment group 2.

10. eventsPerStage: The observed number of events per stage in both treatment groups.

11. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

12. eventsNotAchieved: 1 if number of events could not be reached with observed number of
subjects, 0 otherwise.

13. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

14. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher combination test)’

15. logRankStatistic: Z-score statistic which corresponds to a one-sided log-rank test at con-
sidered stage.

16. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1 or pi1H1 and pi2H1.

17. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

18. hazardRatioEstimateLR: The estimated hazard ratio, derived from the log-rank statistic.

A subset of variables is provided for getSimulationMeans(), getSimulationRates(), getSimulationMultiArmMeans(),
getSimulationMultiArmRates(), or getSimulationMultiArmSurvival().

Value

Returns a data.frame.

Examples

results <- getSimulationSurvival(pi1 = seq(0.3,0.6,0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

data <- getData(results)
head(data)
dim(data)

getDataset Get Dataset

Description

Creates a dataset object and returns it.

Usage

getDataset(..., floatingPointNumbersEnabled = FALSE)

getDataSet(..., floatingPointNumbersEnabled = FALSE)

getDataset 43

Arguments

... A data.frame or some data vectors defining the dataset.
floatingPointNumbersEnabled

If TRUE, sample sizes and event numbers can be specified as floating-point num-
bers (this make sense, e.g., for theoretical comparisons);
by default floatingPointNumbersEnabled = FALSE, i.e., samples sizes and event
numbers defined as floating-point numbers will be truncated.

Details

The different dataset types DatasetMeans, of DatasetRates, or DatasetSurvival can be created
as follows:

• An element of DatasetMeans for one sample is created by
getDataset(sampleSizes =, means =, stDevs =) where
sampleSizes, means, stDevs are vectors with stage-wise sample sizes, means and standard
deviations of length given by the number of available stages.

• An element of DatasetMeans for two samples is created by
getDataset(sampleSizes1 =, sampleSizes2 =, means1 =, means2 =,
stDevs1 =, stDevs2 =) where sampleSizes1, sampleSizes2, means1, means2, stDevs1,
stDevs2 are vectors with stage-wise sample sizes, means and standard deviations for the two
treatment groups of length given by the number of available stages.

• An element of DatasetRates for one sample is created by
getDataset(sampleSizes =, events =) where sampleSizes, events are vectors with stage-
wise sample sizes and events of length given by the number of available stages.

• An element of DatasetRates for two samples is created by
getDataset(sampleSizes1 =, sampleSizes2 =, events1 =, events2 =) where sampleSizes1,
sampleSizes2, events1, events2 are vectors with stage-wise sample sizes and events for the
two treatment groups of length given by the number of available stages.

• An element of DatasetSurvival is created by
getDataset(events =, logRanks =, allocationRatios =) where events, logRanks, and
allocation ratios are the stage-wise events, (one-sided) logrank statistics, and allocation
ratios.

• An element of DatasetMeans, DatasetRates, and DatasetSurvival for more than one com-
parison is created by adding subsequent digits to the variable names. The system can analyze
these data in a multi-arm many-to-one comparison setting where the group with the highest
index represents the control group.

Prefix overall[Capital case of first letter of variable name]... for the variable names en-
ables entering the overall (cumulative) results and calculates stage-wise statistics. Since rpact ver-
sion 3.2, the prefix cumulative[Capital case of first letter of variable name]... or cum[Capital
case of first letter of variable name]... can alternatively be used for this.

n can be used in place of samplesizes.

Note that in survival design usually the overall (cumulative) events and logrank test statistics are
provided in the output, so
getDataset(cumulativeEvents=, cumulativeLogRanks =, cumulativeAllocationRatios =)
is the usual command for entering survival data. Note also that for cumulativeLogranks also the
z scores from a Cox regression can be used.

For multi-arm designs, the index refers to the considered comparison. For example,
getDataset(events1=c(13, 33), logRanks1 = c(1.23, 1.55), events2 = c(16, NA), logRanks2

44 getDataset

= c(1.55, NA))
refers to the case where one active arm (1) is considered at both stages whereas active arm 2 was
dropped at interim. Number of events and logrank statistics are entered for the corresponding com-
parison to control (see Examples).

For enrichment designs, the comparison of two samples is provided for an unstratified (sub-population
wise) or stratified data input.
For unstratified (sub-population wise) data input the data sets are defined for the sub-populations
S1, S2, ..., F, where F refers to the full populations. Use of getDataset(S1 = , S2, ..., F =)
defines the data set to be used in getAnalysisResults() (see examples)
For stratified data input the data sets are defined for the strata S1, S12, S2, ..., R, where R refers to the
remainder of the strata such that the union of all sets is the full population. Use of getDataset(S1 =
, S12 = , S2, ..., R =) defines the data set to be used in getAnalysisResults() (see examples)
For survival data, for enrichment designs the log-rank statistics should be entered as stratified log-
rank statistics in order to provide strong control of Type I error rate. For stratified data input, the
variables to be specified in getDataset() are events, expectedEvents, varianceEvents, and
allocationRatios or overallEvents, overallExpectedEvents, overallVarianceEvents, and
overallAllocationRatios. From this, (stratified) log-rank tests are calculated.

Value

Returns a Dataset object. The following generics (R generic functions) are available for this result
object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Examples

Create a Dataset of Means (one group):
datasetOfMeans <- getDataset(

n = c(22, 11, 22, 11),
means = c(1, 1.1, 1, 1),
stDevs = c(1, 2, 2, 1.3)

)
datasetOfMeans
datasetOfMeans$show(showType = 2)

datasetOfMeans <- getDataset(
cumulativeSampleSizes = c(22, 33, 55, 66),
cumulativeMeans = c(1.000, 1.033, 1.020, 1.017),
cumulativeStDevs = c(1.00, 1.38, 1.64, 1.58)

)
datasetOfMeans
datasetOfMeans$show(showType = 2)
as.data.frame(datasetOfMeans)

Create a Dataset of Means (two groups):
datasetOfMeans <- getDataset(

n1 = c(22, 11, 22, 11),

getDataset 45

n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)
datasetOfMeans

datasetOfMeans <- getDataset(
cumulativeSampleSizes1 = c(22, 33, 55, 66),
cumulativeSampleSizes2 = c(22, 35, 57, 70),
cumulativeMeans1 = c(1, 1.033, 1.020, 1.017),
cumulativeMeans2 = c(1.4, 1.437, 2.040, 2.126),
cumulativeStDevs1 = c(1, 1.38, 1.64, 1.58),
cumulativeStDevs2 = c(1, 1.43, 1.82, 1.74)

)
datasetOfMeans

df <- data.frame(
stages = 1:4,
n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)
datasetOfMeans <- getDataset(df)
datasetOfMeans

Create a Dataset of Means (three groups) where the comparison of
treatment arm 1 to control is dropped at the second interim stage:
datasetOfMeans <- getDataset(

cumN1 = c(22, 33, NA),
cumN2 = c(20, 34, 56),
cumN3 = c(22, 31, 52),
cumMeans1 = c(1.64, 1.54, NA),
cumMeans2 = c(1.7, 1.5, 1.77),
cumMeans3 = c(2.5, 2.06, 2.99),
cumStDevs1 = c(1.5, 1.9, NA),
cumStDevs2 = c(1.3, 1.3, 1.1),
cumStDevs3 = c(1, 1.3, 1.8))

datasetOfMeans

Create a Dataset of Rates (one group):
datasetOfRates <- getDataset(

n = c(8, 10, 9, 11),
events = c(4, 5, 5, 6)

)
datasetOfRates

Create a Dataset of Rates (two groups):
datasetOfRates <- getDataset(

n2 = c(8, 10, 9, 11),
n1 = c(11, 13, 12, 13),
events2 = c(3, 5, 5, 6),
events1 = c(10, 10, 12, 12)

46 getDataset

)
datasetOfRates

Create a Dataset of Rates (three groups) where the comparison of
treatment arm 2 to control is dropped at the first interim stage:
datasetOfRates <- getDataset(

cumN1 = c(22, 33, 44),
cumN2 = c(20, NA, NA),
cumN3 = c(20, 34, 44),
cumEvents1 = c(11, 14, 22),
cumEvents2 = c(17, NA, NA),
cumEvents3 = c(17, 19, 33))

datasetOfRates

Create a Survival Dataset
datasetSurvival <- getDataset(

cumEvents = c(8, 15, 19, 31),
cumAllocationRatios = c(1, 1, 1, 2),
cumLogRanks = c(1.52, 1.98, 1.99, 2.11)

)
datasetSurvival

Create a Survival Dataset with four comparisons where treatment
arm 2 was dropped at the first interim stage, and treatment arm 4
at the second.
datasetSurvival <- getDataset(

cumEvents1 = c(18, 45, 56),
cumEvents2 = c(22, NA, NA),
cumEvents3 = c(12, 41, 56),
cumEvents4 = c(27, 56, NA),
cumLogRanks1 = c(1.52, 1.98, 1.99),
cumLogRanks2 = c(3.43, NA, NA),
cumLogRanks3 = c(1.45, 1.67, 1.87),
cumLogRanks4 = c(1.12, 1.33, NA)

)
datasetSurvival

Enrichment: Stratified and unstratified data input
The following data are from one study. Only the first
(stratified) data input enables a stratified analysis.

Stratified data input
S1 <- getDataset(

sampleSize1 = c(18, 17),
sampleSize2 = c(12, 33),
mean1 = c(125.6, 111.1),
mean2 = c(107.7, 77.7),
stDev1 = c(120.1, 145.6),
stDev2 = c(128.5, 133.3))

S2 <- getDataset(
sampleSize1 = c(11, NA),
sampleSize2 = c(14, NA),
mean1 = c(100.1, NA),
mean2 = c(68.3, NA),
stDev1 = c(116.8, NA),
stDev2 = c(124.0, NA))

S12 <- getDataset(

getDesignCharacteristics 47

sampleSize1 = c(21, 17),
sampleSize2 = c(21, 12),
mean1 = c(135.9, 117.7),
mean2 = c(84.9, 107.7),
stDev1 = c(185.0, 92.3),
stDev2 = c(139.5, 107.7))

R <- getDataset(
sampleSize1 = c(19, NA),
sampleSize2 = c(33, NA),
mean1 = c(142.4, NA),
mean2 = c(77.1, NA),
stDev1 = c(120.6, NA),
stDev2 = c(163.5, NA))

dataEnrichment <- getDataset(S1 = S1, S2 = S2, S12 = S12, R = R)
dataEnrichment

Unstratified data input
S1N <- getDataset(

sampleSize1 = c(39, 34),
sampleSize2 = c(33, 45),
stDev1 = c(156.503, 120.084),
stDev2 = c(134.025, 126.502),
mean1 = c(131.146, 114.4),
mean2 = c(93.191, 85.7))

S2N <- getDataset(
sampleSize1 = c(32, NA),
sampleSize2 = c(35, NA),
stDev1 = c(163.645, NA),
stDev2 = c(131.888, NA),
mean1 = c(123.594, NA),
mean2 = c(78.26, NA))

F <- getDataset(
sampleSize1 = c(69, NA),
sampleSize2 = c(80, NA),
stDev1 = c(165.468, NA),
stDev2 = c(143.979, NA),
mean1 = c(129.296, NA),
mean2 = c(82.187, NA))

dataEnrichmentN <- getDataset(S1 = S1N, S2 = S2N, F = F)
dataEnrichmentN

getDesignCharacteristics

Get Design Characteristics

Description

Calculates the characteristics of a design and returns it.

Usage

getDesignCharacteristics(design)

48 getDesignCharacteristics

Arguments

design The trial design.

Details

Calculates the inflation factor (IF), the expected reduction in sample size under H1, under H0, and
under a value in between H0 and H1. Furthermore, absolute information values are calculated under
the prototype case testing H0: mu = 0 against H1: mu = 1.

Value

Returns a TrialDesignCharacteristics object. The following generics (R generic functions) are
available for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignConditionalDunnett(), getDesignFisher(), getDesignGroupSequential(),
getDesignInverseNormal(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

Examples

Calculate design characteristics for a three-stage O'Brien & Fleming
design at power 90% and compare it with Pocock's design.
getDesignCharacteristics(getDesignGroupSequential(beta = 0.1))
getDesignCharacteristics(getDesignGroupSequential(beta = 0.1, typeOfDesign = "P"))

getDesignConditionalDunnett 49

getDesignConditionalDunnett

Get Design Conditional Dunnett Test

Description

Defines the design to perform an analysis with the conditional Dunnett test.

Usage

getDesignConditionalDunnett(
alpha = 0.025,
informationAtInterim = 0.5,
secondStageConditioning = TRUE

)

Arguments

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

informationAtInterim

The information to be expected at interim, default is informationAtInterim =
0.5.

secondStageConditioning

The way the second stage p-values are calculated within the closed system of
hypotheses. If secondStageConditioning = FALSE is specified, the uncondi-
tional adjusted p-values are used, otherwise conditional adjusted p-values are
calculated, default is secondStageConditioning = TRUE (for details, see Koenig
et al., 2008).

Details

For performing the conditional Dunnett test the design must be defined through this function. You
can define the information fraction and the way of how to compute the second stage p-values only
in the design definition, and not in the analysis call.
See getClosedConditionalDunnettTestResults() for an example and Koenig et al. (2008) and
Wassmer & Brannath (2016), chapter 11 for details of the test procedure.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

50 getDesignFisher

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignCharacteristics(), getDesignFisher(), getDesignGroupSequential(),
getDesignInverseNormal(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

getDesignFisher Get Design Fisher

Description

Performs Fisher’s combination test and returns critical values for this design.

Usage

getDesignFisher(
...,
kMax = NA_integer_,
alpha = NA_real_,
method = c("equalAlpha", "fullAlpha", "noInteraction", "userDefinedAlpha"),
userAlphaSpending = NA_real_,
alpha0Vec = NA_real_,
informationRates = NA_real_,
sided = 1,
bindingFutility = NA,
tolerance = 1e-14,
iterations = 0,
seed = NA_real_

)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 20 for group sequential or inverse
normal and 6 for Fisher combination test designs.

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

method "equalAlpha", "fullAlpha", "noInteraction", or "userDefinedAlpha", de-
fault is "equalAlpha" (for details, see Wassmer, 1999).

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

getDesignFisher 51

alpha0Vec Stopping for futility bounds for stage-wise p-values.

informationRates

The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax.

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

bindingFutility

If bindingFutility = TRUE is specified the calculation of the critical values is
affected by the futility bounds (default is TRUE).

tolerance The numerical tolerance, default is 1e-14.

iterations The number of simulation iterations, e.g., getDesignFisher(iterations =
100000) checks the validity of the critical values for the design. The default
value of iterations is 0, i.e., no simulation will be executed.

seed Seed for simulating the power for Fisher’s combination test. See above, default
is a random seed.

Details

getDesignFisher() calculates the critical values and stage levels for Fisher’s combination test as
described in Bauer (1989), Bauer and Koehne (1994), Bauer and Roehmel (1995), and Wassmer
(1999) for equally and unequally sized stages.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getDesignSet() for creating a set of designs to compare.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignGroupSequential(),
getDesignInverseNormal(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

52 getDesignGroupSequential

Examples

Calculate critical values for a two-stage Fisher's combination test
with full level alpha = 0.05 at the final stage and stopping for
futility bound alpha0 = 0.50, as described in Bauer and Koehne (1994).
getDesignFisher(kMax = 2, method = "fullAlpha", alpha = 0.05, alpha0Vec = 0.50)

getDesignGroupSequential

Get Design Group Sequential

Description

Provides adjusted boundaries and defines a group sequential design.

Usage

getDesignGroupSequential(
...,
kMax = NA_integer_,
alpha = NA_real_,
beta = NA_real_,
sided = 1L,
informationRates = NA_real_,
futilityBounds = NA_real_,
typeOfDesign = c("OF", "P", "WT", "PT", "HP", "WToptimum", "asP", "asOF", "asKD",

"asHSD", "asUser", "noEarlyEfficacy"),
deltaWT = NA_real_,
deltaPT1 = NA_real_,
deltaPT0 = NA_real_,
optimizationCriterion = c("ASNH1", "ASNIFH1", "ASNsum"),
gammaA = NA_real_,
typeBetaSpending = c("none", "bsP", "bsOF", "bsKD", "bsHSD", "bsUser"),
userAlphaSpending = NA_real_,
userBetaSpending = NA_real_,
gammaB = NA_real_,
bindingFutility = NA,
betaAdjustment = NA,
constantBoundsHP = 3,
twoSidedPower = NA,
delayedInformation = NA_real_,
tolerance = 1e-08

)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 20 for group sequential or inverse
normal and 6 for Fisher combination test designs.

getDesignGroupSequential 53

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

beta Type II error rate, necessary for providing sample size calculations (e.g., getSampleSizeMeans()),
beta spending function designs, or optimum designs, default is 0.20. Must be a
positive numeric of length 1.

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

informationRates

The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax.

futilityBounds The futility bounds, defined on the test statistic z scale (numeric vector of length
kMax - 1).

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Pampallona & Tsiatis
("PT"), Haybittle & Peto ("HP"), Optimum design within Wang & Tsiatis class
("WToptimum"), O’Brien & Fleming type alpha spending ("asOF"), Pocock type
alpha spending ("asP"), Kim & DeMets alpha spending ("asKD"), Hwang, Shi
& DeCani alpha spending ("asHSD"), user defined alpha spending ("asUser"),
no early efficacy stop ("noEarlyEfficacy"), default is "OF".

deltaWT Delta for Wang & Tsiatis Delta class.

deltaPT1 Delta1 for Pampallona & Tsiatis class rejecting H0 boundaries.

deltaPT0 Delta0 for Pampallona & Tsiatis class rejecting H1 boundaries.
optimizationCriterion

Optimization criterion for optimum design within Wang & Tsiatis class ("ASNH1",
"ASNIFH1", "ASNsum"), default is "ASNH1", see details.

gammaA Parameter for alpha spending function.
typeBetaSpending

Type of beta spending. Type of of beta spending is one of the following: O’Brien
& Fleming type beta spending, Pocock type beta spending, Kim & DeMets
beta spending, Hwang, Shi & DeCani beta spending, user defined beta spending
("bsOF", "bsP", "bsKD", "bsHSD", "bsUser", default is "none").

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

userBetaSpending

The user defined beta spending. Vector of length kMax containing the cumulative
beta-spending up to each interim stage.

gammaB Parameter for beta spending function.
bindingFutility

Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in
the sense that the study must be stopped if the futility condition was reached
(default is FALSE).

betaAdjustment For two-sided beta spending designs, if betaAdjustement = TRUE a linear ad-
justment of the beta spending values is performed if an overlapping of decision
regions for futility stopping at earlier stages occurs, otherwise no adjustment is
performed (default is TRUE).

54 getDesignGroupSequential

constantBoundsHP

The constant bounds up to stage kMax - 1 for the Haybittle & Peto design (de-
fault is 3).

twoSidedPower For two-sided testing, if twoSidedPower = TRUE is specified the sample size
calculation is performed by considering both tails of the distribution. Default
is FALSE, i.e., it is assumed that one tail probability is equal to 0 or the power
should be directed to one part.

delayedInformation

Delay of information for delayed response designs. Can be a numeric value or a
numeric vector of length kMax - 1

tolerance The numerical tolerance, default is 1e-08.

Details

Depending on typeOfDesign some parameters are specified, others not. For example, only if
typeOfDesign "asHSD" is selected, gammaA needs to be specified.

If an alpha spending approach was specified ("asOF", "asP", "asKD", "asHSD", or "asUser")
additionally a beta spending function can be specified to produce futility bounds.

For optimum designs, "ASNH1" minimizes the expected sample size under H1, "ASNIFH1" min-
imizes the sum of the maximum sample and the expected sample size under H1, and "ASNsum"
minimizes the sum of the maximum sample size, the expected sample size under a value midway
H0 and H1, and the expected sample size under H1.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getDesignSet() for creating a set of designs to compare different designs.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignInverseNormal(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

getDesignInverseNormal 55

Examples

Calculate two-sided critical values for a four-stage
Wang & Tsiatis design with Delta = 0.25 at level alpha = 0.05
getDesignGroupSequential(kMax = 4, alpha = 0.05, sided = 2,

typeOfDesign = "WT", deltaWT = 0.25)

Calculate one-sided critical values and binding futility bounds for a three-stage
design with alpha- and beta-spending functions according to Kim & DeMets with gamma = 2.5
(planned informationRates as specified, default alpha = 0.025 and beta = 0.2)
getDesignGroupSequential(kMax = 3, informationRates = c(0.3, 0.75, 1),

typeOfDesign = "asKD", gammaA = 2.5, typeBetaSpending = "bsKD",
gammaB = 2.5, bindingFutility = TRUE)

Calculate the Pocock type alpha spending critical values if the first
interim analysis was performed after 40% of the maximum information was observed
and the second after 70% of the maximum information was observed (default alpha = 0.025)
getDesignGroupSequential(informationRates = c(0.4, 0.7), typeOfDesign = "asP")

getDesignInverseNormal

Get Design Inverse Normal

Description

Provides adjusted boundaries and defines a group sequential design for its use in the inverse normal
combination test.

Usage

getDesignInverseNormal(
...,
kMax = NA_integer_,
alpha = NA_real_,
beta = NA_real_,
sided = 1L,
informationRates = NA_real_,
futilityBounds = NA_real_,
typeOfDesign = c("OF", "P", "WT", "PT", "HP", "WToptimum", "asP", "asOF", "asKD",

"asHSD", "asUser", "noEarlyEfficacy"),
deltaWT = NA_real_,
deltaPT1 = NA_real_,
deltaPT0 = NA_real_,
optimizationCriterion = c("ASNH1", "ASNIFH1", "ASNsum"),
gammaA = NA_real_,
typeBetaSpending = c("none", "bsP", "bsOF", "bsKD", "bsHSD", "bsUser"),
userAlphaSpending = NA_real_,
userBetaSpending = NA_real_,
gammaB = NA_real_,
bindingFutility = NA,

56 getDesignInverseNormal

betaAdjustment = NA,
constantBoundsHP = 3,
twoSidedPower = NA,
tolerance = 1e-08

)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 20 for group sequential or inverse
normal and 6 for Fisher combination test designs.

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

beta Type II error rate, necessary for providing sample size calculations (e.g., getSampleSizeMeans()),
beta spending function designs, or optimum designs, default is 0.20. Must be a
positive numeric of length 1.

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

informationRates

The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax.

futilityBounds The futility bounds, defined on the test statistic z scale (numeric vector of length
kMax - 1).

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Pampallona & Tsiatis
("PT"), Haybittle & Peto ("HP"), Optimum design within Wang & Tsiatis class
("WToptimum"), O’Brien & Fleming type alpha spending ("asOF"), Pocock type
alpha spending ("asP"), Kim & DeMets alpha spending ("asKD"), Hwang, Shi
& DeCani alpha spending ("asHSD"), user defined alpha spending ("asUser"),
no early efficacy stop ("noEarlyEfficacy"), default is "OF".

deltaWT Delta for Wang & Tsiatis Delta class.

deltaPT1 Delta1 for Pampallona & Tsiatis class rejecting H0 boundaries.

deltaPT0 Delta0 for Pampallona & Tsiatis class rejecting H1 boundaries.
optimizationCriterion

Optimization criterion for optimum design within Wang & Tsiatis class ("ASNH1",
"ASNIFH1", "ASNsum"), default is "ASNH1", see details.

gammaA Parameter for alpha spending function.
typeBetaSpending

Type of beta spending. Type of of beta spending is one of the following: O’Brien
& Fleming type beta spending, Pocock type beta spending, Kim & DeMets
beta spending, Hwang, Shi & DeCani beta spending, user defined beta spending
("bsOF", "bsP", "bsKD", "bsHSD", "bsUser", default is "none").

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

getDesignInverseNormal 57

userBetaSpending

The user defined beta spending. Vector of length kMax containing the cumulative
beta-spending up to each interim stage.

gammaB Parameter for beta spending function.
bindingFutility

Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in
the sense that the study must be stopped if the futility condition was reached
(default is FALSE).

betaAdjustment For two-sided beta spending designs, if betaAdjustement = TRUE a linear ad-
justment of the beta spending values is performed if an overlapping of decision
regions for futility stopping at earlier stages occurs, otherwise no adjustment is
performed (default is TRUE).

constantBoundsHP

The constant bounds up to stage kMax - 1 for the Haybittle & Peto design (de-
fault is 3).

twoSidedPower For two-sided testing, if twoSidedPower = TRUE is specified the sample size
calculation is performed by considering both tails of the distribution. Default
is FALSE, i.e., it is assumed that one tail probability is equal to 0 or the power
should be directed to one part.

tolerance The numerical tolerance, default is 1e-08.

Details

Depending on typeOfDesign some parameters are specified, others not. For example, only if
typeOfDesign "asHSD" is selected, gammaA needs to be specified.

If an alpha spending approach was specified ("asOF", "asP", "asKD", "asHSD", or "asUser")
additionally a beta spending function can be specified to produce futility bounds.

For optimum designs, "ASNH1" minimizes the expected sample size under H1, "ASNIFH1" min-
imizes the sum of the maximum sample and the expected sample size under H1, and "ASNsum"
minimizes the sum of the maximum sample size, the expected sample size under a value midway
H0 and H1, and the expected sample size under H1.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,
• print() to print the object,
• summary() to display a summary of the object,
• plot() to plot the object,
• as.data.frame() to coerce the object to a data.frame,
• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

58 getDesignSet

See Also

getDesignSet() for creating a set of designs to compare different designs.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignGroupSequential(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

Examples

Calculate two-sided critical values for a four-stage
Wang & Tsiatis design with Delta = 0.25 at level alpha = 0.05
getDesignInverseNormal(kMax = 4, alpha = 0.05, sided = 2,

typeOfDesign = "WT", deltaWT = 0.25)

Defines a two-stage design at one-sided alpha = 0.025 with provision of early stopping
if the one-sided p-value exceeds 0.5 at interim and no early stopping for efficacy.
The futility bound is non-binding.
getDesignInverseNormal(kMax = 2, typeOfDesign = "noEarlyEfficacy", futilityBounds = 0)

Calculate one-sided critical values and binding futility bounds for a three-stage
design with alpha- and beta-spending functions according to Kim & DeMets with gamma = 2.5
(planned informationRates as specified, default alpha = 0.025 and beta = 0.2)
getDesignInverseNormal(kMax = 3, informationRates = c(0.3, 0.75, 1),

typeOfDesign = "asKD", gammaA = 2.5, typeBetaSpending = "bsKD",
gammaB = 2.5, bindingFutility = TRUE)

getDesignSet Get Design Set

Description

Creates a trial design set object and returns it.

Usage

getDesignSet(...)

Arguments

... designs or design and one or more design parameters, e.g., deltaWT = c(0.1,
0.3, 0.4).

• design The master design (optional, you need to specify an additional pa-
rameter that shall be varied).

• designs The designs to compare (optional, you need to specify the variable
variedParameters).

Details

Specify a master design and one or more design parameters or a list of designs.

getDesignSet 59

Value

Returns a TrialDesignSet object. The following generics (R generic functions) are available for
this result object:

• names to obtain the field names,

• length to obtain the number of design,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Example 1
design <- getDesignGroupSequential(

alpha = 0.05, kMax = 6,
sided = 2, typeOfDesign = "WT", deltaWT = 0.1

)
designSet <- getDesignSet()
designSet$add(design = design, deltaWT = c(0.3, 0.4))

if (require(ggplot2)) plot(designSet, type = 1)

Example 2 (shorter script)
design <- getDesignGroupSequential(

alpha = 0.05, kMax = 6,
sided = 2, typeOfDesign = "WT", deltaWT = 0.1

)
designSet <- getDesignSet(design = design, deltaWT = c(0.3, 0.4))

if (require(ggplot2)) plot(designSet, type = 1)

Example 3 (use of designs instead of design)
d1 <- getDesignGroupSequential(

alpha = 0.05, kMax = 2,
sided = 1, beta = 0.2, typeOfDesign = "asHSD",
gammaA = 0.5, typeBetaSpending = "bsHSD", gammaB = 0.5

)
d2 <- getDesignGroupSequential(

alpha = 0.05, kMax = 4,
sided = 1, beta = 0.2, typeOfDesign = "asP",
typeBetaSpending = "bsP"

)

60 getEventProbabilities

designSet <- getDesignSet(
designs = c(d1, d2),
variedParameters = c("typeOfDesign", "kMax")

)

if (require(ggplot2)) plot(designSet, type = 8, nMax = 20)

getEventProbabilities Get Event Probabilities

Description

Returns the event probabilities for specified parameters at given time vector.

Usage

getEventProbabilities(
time,
...,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
kappa = 1,
piecewiseSurvivalTime = NA_real_,
lambda2 = NA_real_,
lambda1 = NA_real_,
allocationRatioPlanned = 1,
hazardRatio = NA_real_,
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12,
maxNumberOfSubjects = NA_real_

)

Arguments

time A numeric vector with time values.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

getEventProbabilities 61

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.
dropoutRate2 The assumed drop-out rate in the control group, default is 0.
dropoutTime The assumed time for drop-out rates in the control and the treatment group,

default is 12.
maxNumberOfSubjects

If maxNumberOfSubjects > 0 is specified, the end of accrual at specified accrualIntensity
for the specified number of subjects is determined or accrualIntensity is cal-
culated at fixed end of accrual.

Details

The function computes the overall event probabilities in a two treatment groups design. For details
of the parameters see getSampleSizeSurvival().

Value

Returns a EventProbabilities object. The following generics (R generic functions) are available
for this result object:

• names() to obtain the field names,
• print() to print the object,
• summary() to display a summary of the object,
• plot() to plot the object,
• as.data.frame() to coerce the object to a data.frame,
• as.matrix() to coerce the object to a matrix.

62 getFinalConfidenceInterval

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Calculate event probabilities for staggered subjects' entry, piecewisely defined
survival time and hazards, and plot it.
timeVector <- seq(0, 100, 1)
y <- getEventProbabilities(timeVector, accrualTime = c(0, 20, 60),

accrualIntensity = c(5, 20),
piecewiseSurvivalTime = c(0, 20, 80),
lambda2 = c(0.02, 0.06, 0.1),
hazardRatio = 2

)

plot(timeVector, y$cumulativeEventProbabilities, type = 'l')

getFinalConfidenceInterval

Get Final Confidence Interval

Description

Returns the final confidence interval for the parameter of interest. It is based on the prototype case,
i.e., the test for testing a mean for normally distributed variables.

Usage

getFinalConfidenceInterval(
design,
dataInput,
...,
directionUpper = TRUE,
thetaH0 = NA_real_,
tolerance = 1e-06,
stage = NA_integer_

)

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

... Further (optional) arguments to be passed:

getFinalConfidenceInterval 63

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing
rates and the hazard ratio. For testing rates, if normalApproximation =
FALSE is specified, the binomial test (one sample) or the exact test of Fisher
(two samples) is used for calculating the p-values. In the survival setting,
normalApproximation = FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

tolerance The numerical tolerance, default is 1e-06. Must be a positive numeric of length
1.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

Depending on design and dataInput the final confidence interval and median unbiased estimate
that is based on the stage-wise ordering of the sample space will be calculated and returned. Addi-
tionally, a non-standardized ("general") version is provided, the estimated standard deviation must
be used to obtain the confidence interval for the parameter of interest.

For the inverse normal combination test design with more than two stages, a warning informs that
the validity of the confidence interval is theoretically shown only if no sample size change was
performed.

Value

Returns a list containing

• finalStage,
• medianUnbiased,
• finalConfidenceInterval,
• medianUnbiasedGeneral, and
• finalConfidenceIntervalGeneral.

64 getFinalPValue

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalPValue(), getRepeatedConfidenceIntervals(),
getRepeatedPValues(), getStageResults(), getTestActions()

Examples

design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getFinalConfidenceInterval(design, dataInput = data)

getFinalPValue Get Final P Value

Description

Returns the final p-value for given stage results.

Usage

getFinalPValue(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Only available for backward compatibility.

Details

The calculation of the final p-value is based on the stage-wise ordering of the sample space. This
enables the calculation for both the non-adaptive and the adaptive case. For Fisher’s combination
test, it is available for kMax = 2 only.

Value

Returns a list containing

• finalStage,

• pFinal.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

getGroupSequentialProbabilities 65

Examples

design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getFinalPValue(getStageResults(design, dataInput = data))

getGroupSequentialProbabilities

Get Group Sequential Probabilities

Description

Calculates probabilities in the group sequential setting.

Usage

getGroupSequentialProbabilities(decisionMatrix, informationRates)

Arguments

decisionMatrix A matrix with either 2 or 4 rows and kMax = length(informationRates) columns,
see details.

informationRates

The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax.

Details

Given a sequence of information rates (fixing the correlation structure), and decisionMatrix with
either 2 or 4 rows and kMax = length(informationRates) columns, this function calculates a proba-
bility matrix containing, for two rows, the probabilities:
P(Z_1 <- l_1), P(l_1 <- Z_1 < u_1, Z_2 < l_1),..., P(l_kMax-1 <- Z_kMax-1 < u_kMax-1, Z_kMax
< l_l_kMax)
P(Z_1 <- u_1), P(l_1 <- Z_1 < u_1, Z_2 < u_1),..., P(l_kMax-1 <- Z_kMax-1 < u_kMax-1, Z_kMax
< u_l_kMax)
P(Z_1 <- Inf), P(l_1 <- Z_1 < u_1, Z_2 < Inf),..., P(l_kMax-1 <- Z_kMax-1 < u_kMax-1, Z_kMax
< Inf)
with continuation matrix
l_1,...,l_kMax
u_1,...,u_kMax
For 4 rows, the continuation region contains of two regions and the probability matrix is obtained
analogously (cf., Wassmer and Brannath, 2016).

See Also

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignGroupSequential(), getDesignInverseNormal(), getPowerAndAverageSampleNumber()

66 getGroupSequentialProbabilities

Examples

Calculate Type I error rates in the two-sided group sequential setting when
performing kMax interim stages with constant critical boundaries at level alpha:
alpha <- 0.05
kMax <- 10
decisionMatrix <- matrix(c(

rep(-qnorm(1 - alpha / 2), kMax),
rep(qnorm(1 - alpha / 2), kMax)

), nrow = 2, byrow = TRUE)
informationRates <- (1:kMax) / kMax
probs <- getGroupSequentialProbabilities(decisionMatrix, informationRates)
cumsum(probs[3,] - probs[2,] + probs[1,])

Do the same for a one-sided design without futility boundaries:
decisionMatrix <- matrix(c(

rep(-Inf, kMax),
rep(qnorm(1 - alpha), kMax)

), nrow = 2, byrow = TRUE)
informationRates <- (1:kMax) / kMax
probs <- getGroupSequentialProbabilities(decisionMatrix, informationRates)
cumsum(probs[3,] - probs[2,])

Check that two-sided Pampallona and Tsiatis boundaries with binding
futility bounds obtain Type I error probabilities equal to alpha:
x <- getDesignGroupSequential(

alpha = 0.05, beta = 0.1, kMax = 3, typeOfDesign = "PT",
deltaPT0 = 0, deltaPT1 = 0.4, sided = 2, bindingFutility = TRUE

)
dm <- matrix(c(

-x$criticalValues, -x$futilityBounds, 0,
x$futilityBounds, 0, x$criticalValues

), nrow = 4, byrow = TRUE)
dm[is.na(dm)] <- 0
probs <- getGroupSequentialProbabilities(

decisionMatrix = dm, informationRates = (1:3) / 3
)
sum(probs[5,] - probs[4,] + probs[1,])

Check the Type I error rate decrease when using non-binding futility bounds:
x <- getDesignGroupSequential(

alpha = 0.05, beta = 0.1, kMax = 3, typeOfDesign = "PT",
deltaPT0 = 0, deltaPT1 = 0.4, sided = 2, bindingFutility = FALSE

)
dm <- matrix(c(

-x$criticalValues, -x$futilityBounds, 0,
x$futilityBounds, 0, x$criticalValues

), nrow = 4, byrow = TRUE)
dm[is.na(dm)] <- 0
probs <- getGroupSequentialProbabilities(

decisionMatrix = dm, informationRates = (1:3) / 3
)
sum(probs[5,] - probs[4,] + probs[1,])

getLambdaStepFunction 67

getLambdaStepFunction Get Lambda Step Function

Description

Calculates the lambda step values for a given time vector.

Usage

getLambdaStepFunction(timeValues, ..., piecewiseSurvivalTime, piecewiseLambda)

Arguments

timeValues A numeric vector that specifies the time values for which the lambda step values
shall be calculated.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

piecewiseSurvivalTime

A numeric vector that specifies the time intervals for the piecewise definition of
the exponential survival time cumulative distribution function (see details).

piecewiseLambda

A numeric vector that specifies the assumed hazard rate in the treatment group.

Details

The first element of the vector piecewiseSurvivalTime must be equal to 0. This function is used
for plotting of sample size survival results (cf., plot, type = 13 and type = 14).

Value

A numeric vector containing the lambda step values that corresponds to the specified time values.

getLogLevel Get Log Level

Description

Returns the current rpact log level.

Usage

getLogLevel()

Details

This function gets the log level of the rpact internal log message system.

Value

Returns a character of length 1 specifying the current log level.

68 getNumberOfSubjects

See Also

• setLogLevel() for setting the log level,
• resetLogLevel() for resetting the log level to default.

Examples

show current log level
getLogLevel()

getLongFormat Get Long Format

Description

Returns the specified dataset as a data.frame in so-called long format.

Usage

getLongFormat(dataInput)

Details

In the long format (narrow, stacked), the data are presented with one column containing all the
values and another column listing the context of the value, i.e., the data for the different groups are
in one column and the dataset contains an additional "group" column.

Value

A data.frame will be returned.

See Also

getWideFormat() for returning the dataset as a data.frame in wide format.

getNumberOfSubjects Get Number Of Subjects

Description

Returns the number of recruited subjects at given time vector.

Usage

getNumberOfSubjects(
time,
...,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
maxNumberOfSubjects = NA_real_

)

getNumberOfSubjects 69

Arguments

time A numeric vector with time values.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

maxNumberOfSubjects

If maxNumberOfSubjects > 0 is specified, the end of accrual at specified accrualIntensity
for the specified number of subjects is determined or accrualIntensity is cal-
culated at fixed end of accrual.

Details

Calculate number of subjects over time range at given accrual time vector and accrual intensity.
Intensity can either be defined in absolute or relative terms (for the latter, maxNumberOfSubjects
needs to be defined)
The function is used by getSampleSizeSurvival().

Value

Returns a NumberOfSubjects object. The following generics (R generic functions) are available
for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

AccrualTime for defining the accrual time.

70 getObservedInformationRates

Examples

getNumberOfSubjects(time = seq(10, 70, 10), accrualTime = c(0, 20, 60),
accrualIntensity = c(5, 20))

getNumberOfSubjects(time = seq(10, 70, 10), accrualTime = c(0, 20, 60),
accrualIntensity = c(0.1, 0.4), maxNumberOfSubjects = 900)

getObservedInformationRates

Get Observed Information Rates

Description

Recalculates the observed information rates from the specified dataset.

Usage

getObservedInformationRates(
dataInput,
...,
maxInformation = NULL,
informationEpsilon = NULL,
stage = NA_integer_

)

Arguments

dataInput The dataset for which the information rates shall be recalculated.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

maxInformation Positive integer value specifying the maximum information.
informationEpsilon

Positive integer value specifying the absolute information epsilon, which de-
fines the maximum distance from the observed information to the maximum
information that causes the final analysis. Updates at the final analysis in case
the observed information at the final analysis is smaller ("under-running") than
the planned maximum information maxInformation, default is 0. Alternatively,
a floating-point number > 0 and < 1 can be specified to define a relative infor-
mation epsilon.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

For means and rates the maximum information is the maximum number of subjects or the relative
proportion if informationEpsilon < 1; for survival data it is the maximum number of events or
the relative proportion if informationEpsilon < 1.

getOutputFormat 71

See Also

• getAnalysisResults() for using getObservedInformationRates() implicit,

• https://www.rpact.com/vignettes/rpact_boundary_update_example

Examples

Absolute information epsilon:
decision rule 45 >= 46 - 1, i.e., under-running
data <- getDataset(

overallN = c(22, 45),
overallEvents = c(11, 28)

)
getObservedInformationRates(data,

maxInformation = 46, informationEpsilon = 1
)

Relative information epsilon:
last information rate = 45/46 = 0.9783,
is > 1 - 0.03 = 0.97, i.e., under-running
data <- getDataset(

overallN = c(22, 45),
overallEvents = c(11, 28)

)
getObservedInformationRates(data,

maxInformation = 46, informationEpsilon = 0.03
)

getOutputFormat Get Output Format

Description

With this function the format of the standard outputs of all rpact objects can be shown and written
to a file.

Usage

getOutputFormat(
parameterName = NA_character_,
...,
file = NA_character_,
default = FALSE,
fields = TRUE

)

Arguments

parameterName The name of the parameter whose output format shall be returned. Leave the
default NA_character_ if the output format of all parameters shall be returned.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

72 getOutputFormat

file An optional file name where to write the output formats (see Details for more
information).

default If TRUE the default output format of the specified parameter(s) will be returned,
default is FALSE.

fields If TRUE the names of all affected object fields will be displayed, default is TRUE.

Details

Output formats can be written to a text file by specifying a file. See setOutputFormat()() to
learn how to read a formerly saved file.

Note that the parameterName must not match exactly, e.g., for p-values the following parameter
names will be recognized amongst others:

1. p value

2. p.values

3. p-value

4. pValue

5. rpact.output.format.p.value

Value

A named list of output formats.

See Also

Other output formats: setOutputFormat()

Examples

show output format of p values
getOutputFormat("p.value")

set new p value output format
setOutputFormat("p.value", digits = 5, nsmall = 5)

show sample sizes as smallest integers not less than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "ceiling")
getSampleSizeMeans()

show sample sizes as smallest integers not greater than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "floor")
getSampleSizeMeans()

set new sample size output format without round function
setOutputFormat("sample size", digits = 2, nsmall = 2)
getSampleSizeMeans()

reset sample size output format to default
setOutputFormat("sample size")
getSampleSizeMeans()
getOutputFormat("sample size")

getParameterCaption 73

getParameterCaption Get Parameter Caption

Description

Returns the parameter caption for a given object and parameter name.

Usage

getParameterCaption(obj, parameterName)

Details

This function identifies and returns the caption that will be used in print outputs of an rpact result
object.

Value

Returns a character of specifying the corresponding caption of a given parameter name. Returns
NULL if the specified parameterName does not exist.

See Also

getParameterName() for getting the parameter name for a given caption.

Examples

getParameterCaption(getDesignInverseNormal(), "kMax")

getParameterName Get Parameter Name

Description

Returns the parameter name for a given object and parameter caption.

Usage

getParameterName(obj, parameterCaption)

Details

This function identifies and returns the parameter name for a given caption that will be used in print
outputs of an rpact result object.

Value

Returns a character of specifying the corresponding name of a given parameter caption. Returns
NULL if the specified parameterCaption does not exist.

74 getPiecewiseSurvivalTime

See Also

getParameterCaption() for getting the parameter caption for a given name.

Examples

getParameterName(getDesignInverseNormal(), "Maximum number of stages")

getPiecewiseSurvivalTime

Get Piecewise Survival Time

Description

Returns a PiecewiseSurvivalTime object that contains the all relevant parameters of an exponen-
tial survival time cumulative distribution function. Use names to obtain the field names.

Usage

getPiecewiseSurvivalTime(
piecewiseSurvivalTime = NA_real_,
...,
lambda1 = NA_real_,
lambda2 = NA_real_,
hazardRatio = NA_real_,
pi1 = NA_real_,
pi2 = NA_real_,
median1 = NA_real_,
median2 = NA_real_,
eventTime = 12,
kappa = 1,
delayedResponseAllowed = FALSE

)

Arguments

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function (see details).

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

getPiecewiseSurvivalTime 75

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

median1 The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

eventTime The assumed time under which the event rates are calculated, default is 12.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

delayedResponseAllowed

If TRUE, delayed response is allowed; otherwise it will be validated that the
response is not delayed, default is FALSE.

Value

Returns a PiecewiseSurvivalTime object. The following generics (R generic functions) are avail-
able for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

76 getPlotSettings

Examples

getPiecewiseSurvivalTime(lambda2 = 0.5, hazardRatio = 0.8)

getPiecewiseSurvivalTime(lambda2 = 0.5, lambda1 = 0.4)

getPiecewiseSurvivalTime(pi2 = 0.5, hazardRatio = 0.8)

getPiecewiseSurvivalTime(pi2 = 0.5, pi1 = 0.4)

getPiecewiseSurvivalTime(pi1 = 0.3)

getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4)

getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6, 9),
lambda2 = c(0.025, 0.04, 0.015), hazardRatio = 0.8)

getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6, 9),
lambda2 = c(0.025, 0.04, 0.015),
lambda1 = c(0.025, 0.04, 0.015) * 0.8)

pwst <- getPiecewiseSurvivalTime(list(
"0 - <6" = 0.025,
"6 - <9" = 0.04,
"9 - <15" = 0.015,
"15 - <21" = 0.01,
">=21" = 0.007), hazardRatio = 0.75)

pwst

The object created by getPiecewiseSurvivalTime() can be used directly in
getSampleSizeSurvival():
getSampleSizeSurvival(piecewiseSurvivalTime = pwst)

The object created by getPiecewiseSurvivalTime() can be used directly in
getPowerSurvival():
getPowerSurvival(piecewiseSurvivalTime = pwst,

maxNumberOfEvents = 40, maxNumberOfSubjects = 100)

getPlotSettings Get Plot Settings

Description

Returns a plot settings object.

Usage

getPlotSettings(
lineSize = 0.8,
pointSize = 3,
pointColor = NA_character_,
mainTitleFontSize = 14,

getPowerAndAverageSampleNumber 77

axesTextFontSize = 10,
legendFontSize = 11,
scalingFactor = 1

)

Arguments

lineSize The line size, default is 0.8.

pointSize The point size, default is 3.

pointColor The point color (character), default is NA_character_.
mainTitleFontSize

The main title font size, default is 14.
axesTextFontSize

The axes text font size, default is 10.

legendFontSize The legend font size, default is 11.

scalingFactor The scaling factor, default is 1.

Details

Returns an object of class PlotSettings that collects typical plot settings.

getPowerAndAverageSampleNumber

Get Power And Average Sample Number

Description

Returns the power and average sample number of the specified design.

Usage

getPowerAndAverageSampleNumber(design, theta = seq(-1, 1, 0.02), nMax = 100)

Arguments

design The trial design.

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

nMax The maximum sample size. Must be a positive integer of length 1.

Details

This function returns the power and average sample number (ASN) of the specified design for
the prototype case which is testing H0: mu = mu0 in a one-sample design. theta represents the
standardized effect (mu - mu0) / sigma and power and ASN is calculated for maximum sample
size nMax. For other designs than the one-sample test of a mean the standardized effect needs to be
adjusted accordingly.

78 getPowerMeans

Value

Returns a PowerAndAverageSampleNumberResult object. The following generics (R generic func-
tions) are available for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignGroupSequential(), getDesignInverseNormal(), getGroupSequentialProbabilities()

Examples

Calculate power, stopping probabilities, and expected sample
size for the default design with specified theta and nMax
getPowerAndAverageSampleNumber(

getDesignGroupSequential(),
theta = seq(-1, 1, 0.5), nMax = 100)

getPowerMeans Get Power Means

Description

Returns the power, stopping probabilities, and expected sample size for testing means in one or two
samples at given sample size.

Usage

getPowerMeans(
design = NULL,
...,
groups = 2L,
normalApproximation = FALSE,
meanRatio = FALSE,
thetaH0 = ifelse(meanRatio, 1, 0),

getPowerMeans 79

alternative = seq(0, 1, 0.2),
stDev = 1,
directionUpper = NA,
maxNumberOfSubjects = NA_real_,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. If TRUE, the variance is assumed to be
known, default is FALSE, i.e., the calculations are performed with the t distribu-
tion.

meanRatio If TRUE, the sample size for one-sided testing of H0: mu1 / mu2 = thetaH0 is
calculated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

alternative The alternative hypothesis value for testing means. This can be a vector of as-
sumed alternatives, default is seq(0, 1, 0.2) (power calculations) or seq(0.2,
1, 0.2) (sample size calculations).

stDev The standard deviation under which the sample size or power calculation is per-
formed, default is 1. If meanRatio = TRUE is specified, stDev defines the coeffi-
cient of variation sigma / mu2. Must be a positive numeric of length 1.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. For two treatment arms, it is
the maximum number of subjects for both treatment arms.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

80 getPowerMeans

Details

At given design the function calculates the power, stopping probabilities, and expected sample size,
for testing means at given sample size. In a two treatment groups design, additionally, an allocation
ratio = n1 / n2 can be specified. A null hypothesis value thetaH0 != 0 for testing the difference of
two means or thetaH0 != 1 for testing the ratio of two means can be specified. For the specified
sample size, critical bounds and stopping for futility bounds are provided at the effect scale (mean,
mean difference, or mean ratio, respectively)

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerRates(), getPowerSurvival()

Examples

Calculate the power, stopping probabilities, and expected sample size
for testing H0: mu1 - mu2 = 0 in a two-armed design against a range of
alternatives H1: mu1 - m2 = delta, delta = (0, 1, 2, 3, 4, 5),
standard deviation sigma = 8, maximum sample size N = 80 (both treatment
arms), and an allocation ratio n1/n2 = 2. The design is a three stage
O'Brien & Fleming design with non-binding futility bounds (-0.5, 0.5)
for the two interims. The computation takes into account that the t test
is used (normalApproximation = FALSE).
getPowerMeans(getDesignGroupSequential(alpha = 0.025,

sided = 1, futilityBounds = c(-0.5, 0.5)),
groups = 2, alternative = c(0:5), stDev = 8,
normalApproximation = FALSE, maxNumberOfSubjects = 80,
allocationRatioPlanned = 2)

getPowerRates 81

getPowerRates Get Power Rates

Description

Returns the power, stopping probabilities, and expected sample size for testing rates in one or two
samples at given sample sizes.

Usage

getPowerRates(
design = NULL,
...,
groups = 2L,
riskRatio = FALSE,
thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = seq(0.2, 0.5, 0.1),
pi2 = 0.2,
directionUpper = NA,
maxNumberOfSubjects = NA_real_,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.

riskRatio If TRUE, the power for one-sided testing of H0: pi1 / pi2 = thetaH0 is calcu-
lated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

82 getPowerRates

pi1 A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(0.2, 0.5, 0.1)
(power calculations and simulations) or seq(0.4, 0.6, 0.1) (sample size cal-
culations).

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. For two treatment arms, it is
the maximum number of subjects for both treatment arms.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

Details

At given design the function calculates the power, stopping probabilities, and expected sample size,
for testing rates for given maximum sample size. The sample sizes over the stages are calculated
according to the specified information rate in the design. In a two treatment groups design, addi-
tionally, an allocation ratio = n1/n2 can be specified. If a null hypothesis value thetaH0 != 0 for
testing the difference of two rates or thetaH0 != 1 for testing the risk ratio is specified, the for-
mulas according to Farrington & Manning (Statistics in Medicine, 1990) are used (only one-sided
testing). Critical bounds and stopping for futility bounds are provided at the effect scale (rate, rate
difference, or rate ratio, respectively). For the two-sample case, the calculation here is performed at
fixed pi2 as given as argument in the function. Note that the power calculation for rates is always
based on the normal approximation.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

getPowerSurvival 83

See Also

Other power functions: getPowerMeans(), getPowerSurvival()

Examples

Calculate the power, stopping probabilities, and expected sample size in a
two-armed design at given maximum sample size N = 200 in a three-stage
O'Brien & Fleming design with information rate vector (0.2,0.5,1),
non-binding futility boundaries (0,0), i.e., the study stops for futility
if the p-value exceeds 0.5 at interm, and allocation ratio = 2 for a range
of pi1 values when testing H0: pi1 - pi2 = -0.1:
getPowerRates(getDesignGroupSequential(informationRates = c(0.2, 0.5, 1),

futilityBounds = c(0, 0)), groups = 2, thetaH0 = -0.1,
pi1 = seq(0.3, 0.6, 0.1), directionUpper = FALSE,
pi2 = 0.7, allocationRatioPlanned = 2, maxNumberOfSubjects = 200)

Calculate the power, stopping probabilities, and expected sample size in a single
arm design at given maximum sample size N = 60 in a three-stage two-sided
O'Brien & Fleming design with information rate vector (0.2, 0.5,1)
for a range of pi1 values when testing H0: pi = 0.3:
getPowerRates(getDesignGroupSequential(informationRates = c(0.2, 0.5,1),

sided = 2), groups = 1, thetaH0 = 0.3, pi1 = seq(0.3, 0.5, 0.05),
maxNumberOfSubjects = 60)

getPowerSurvival Get Power Survival

Description

Returns the power, stopping probabilities, and expected sample size for testing the hazard ratio in a
two treatment groups survival design.

Usage

getPowerSurvival(
design = NULL,
...,
typeOfComputation = c("Schoenfeld", "Freedman", "HsiehFreedman"),
thetaH0 = 1,
directionUpper = NA,
pi1 = NA_real_,
pi2 = NA_real_,
lambda1 = NA_real_,
lambda2 = NA_real_,
median1 = NA_real_,
median2 = NA_real_,
kappa = 1,
hazardRatio = NA_real_,
piecewiseSurvivalTime = NA_real_,
allocationRatioPlanned = 1,

84 getPowerSurvival

eventTime = 12,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
maxNumberOfSubjects = NA_real_,
maxNumberOfEvents = NA_real_,
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

typeOfComputation

Three options are available: "Schoenfeld", "Freedman", "HsiehFreedman",
the default is "Schoenfeld". For details, see Hsieh (Statistics in Medicine,
1992). For non-inferiority testing (i.e., thetaH0 != 1), only Schoenfeld’s for-
mula can be used.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

getPowerSurvival 85

median1 The assumed median survival time in the treatment group, there is no default.
median2 The assumed median survival time in the reference group, there is no default.

Must be a positive numeric of length 1.
kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape

of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

eventTime The assumed time under which the event rates are calculated, default is 12.
accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details

see getAccrualTime()).
accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. If accrual time and accrual
intensity are specified, this will be calculated. Must be a positive integer of
length 1.

maxNumberOfEvents

maxNumberOfEvents > 0 is the maximum number of events, it determines the
power of the test and needs to be specified.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.
dropoutRate2 The assumed drop-out rate in the control group, default is 0.
dropoutTime The assumed time for drop-out rates in the control and the treatment group,

default is 12.

Details

At given design the function calculates the power, stopping probabilities, and expected sample
size at given number of events and number of subjects. It also calculates the time when the re-
quired events are expected under the given assumptions (exponentially, piecewise exponentially, or

86 getPowerSurvival

Weibull distributed survival times and constant or non-constant piecewise accrual). Additionally,
an allocation ratio = n1/n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

The formula of Kim & Tsiatis (Biometrics, 1990) is used to calculate the expected number of events
under the alternative (see also Lakatos & Lan, Statistics in Medicine, 1992). These formulas are
generalized to piecewise survival times and non-constant piecewise accrual over time.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.
accrualIntensity itself is a value or a vector (depending on the length of accrualtime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all ele-
ments in accrualIntensity are smaller than 1, accrualIntensity defines the *relative* intensity
how subjects enter the trial. For example, accrualIntensity = c(0.1, 0.2) specifies that in the
second accrual interval the intensity is doubled as compared to the first accrual interval. The actual
(absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects. Note
that the default is accrualIntensity = 0.1 meaning that the *absolute* accrual intensity will be
calculated.

getPowerSurvival 87

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerMeans(), getPowerRates()

Examples

Fixed sample size with minimum required definitions, pi1 = c(0.4,0.5,0.5) and
pi2 = 0.2 at event time 12, accrual time 12 and follow-up time 6 as default
getPowerSurvival(maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Four stage O'Brien & Fleming group sequential design with minimum required
definitions, pi1 = c(0.4,0.5,0.5) and pi2 = 0.2 at event time 12,
accrual time 12 and follow-up time 6 as default
getPowerSurvival(design = getDesignGroupSequential(kMax = 4),

maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

For fixed sample design, determine necessary accrual time if 200 subjects and
30 subjects per time unit can be recruited
getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0),

accrualIntensity = 30, maxNumberOfSubjects = 200)

Determine necessary accrual time if 200 subjects and if the first 6 time units
20 subjects per time unit can be recruited, then 30 subjects per time unit
getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0, 6),

accrualIntensity = c(20, 30), maxNumberOfSubjects = 200)

Determine maximum number of Subjects if the first 6 time units 20 subjects per
time unit can be recruited, and after 10 time units 30 subjects per time unit
getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0, 6, 10),

accrualIntensity = c(20, 30))

Specify accrual time as a list
at <- list(

"0 - <6" = 20,
"6 - Inf" = 30)

getPowerSurvival(maxNumberOfEvents = 40, accrualTime = at, maxNumberOfSubjects = 200)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30)

getPowerSurvival(maxNumberOfEvents = 40, accrualTime = at)

Specify effect size for a two-stage group design with O'Brien & Fleming boundaries
Effect size is based on event rates at specified event time, directionUpper = FALSE
needs to be specified because it should be shown that hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential(kMax = 2), pi1 = 0.2, pi2 = 0.3,

eventTime = 24, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

88 getRawData

Effect size is based on event rate at specified event time for the reference group
and hazard ratio, directionUpper = FALSE needs to be specified
because it should be shown that hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential(kMax = 2), hazardRatio = 0.5,

pi2 = 0.3, eventTime = 24, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

Effect size is based on hazard rate for the reference group and hazard ratio,
directionUpper = FALSE needs to be specified because it should be shown that
hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential(kMax = 2), hazardRatio = 0.5,

lambda2 = 0.02, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

Specification of piecewise exponential survival time and hazard ratios
getPowerSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01,0.02,0.04),
hazardRatio = c(1.5, 1.8, 2), maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time as list and hazard ratios
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getPowerSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2),
maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time for both treatment arms
getPowerSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015,0.03,0.06), maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time as a list
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getPowerSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2),
maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specify effect size based on median survival times
getPowerSurvival(median1 = 5, median2 = 3,

maxNumberOfEvents = 40, maxNumberOfSubjects = 200, directionUpper = FALSE)

Specify effect size based on median survival times of
Weibull distribtion with kappa = 2
getPowerSurvival(median1 = 5, median2 = 3, kappa = 2,

maxNumberOfEvents = 40, maxNumberOfSubjects = 200, directionUpper = FALSE)

getRawData Get Simulation Raw Data for Survival

getRawData 89

Description

Returns the raw survival data which was generated for simulation.

Usage

getRawData(x, aggregate = FALSE)

Arguments

x A SimulationResults object created by getSimulationSurvival().

aggregate Logical. If TRUE the raw data will be aggregated similar to the result of getData(),
default is FALSE.

Details

This function works only if getSimulationSurvival() was called with a
maxNumberOfRawDatasetsPerStage > 0 (default is 0).

This function can be used to get the simulated raw data from a simulation results object obtained
by getSimulationSurvival(). Note that getSimulationSurvival() must called before with
maxNumberOfRawDatasetsPerStage > 0. The data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stopStage: The stage of stopping.

3. subjectId: The subject id (increasing number 1, 2, 3, ...)

4. accrualTime: The accrual time, i.e., the time when the subject entered the trial.

5. treatmentGroup: The treatment group number (1 or 2).

6. survivalTime: The survival time of the subject.

7. dropoutTime: The dropout time of the subject (may be NA).

8. observationTime: The specific observation time.

9. timeUnderObservation: The time under observation is defined as follows:
if (event == TRUE)
timeUnderObservation <- survivalTime;
else if (dropoutEvent == TRUE)
timeUnderObservation <- dropoutTime;
else
timeUnderObservation <- observationTime - accrualTime;

10. event: TRUE if an event occurred; FALSE otherwise.

11. dropoutEvent: TRUE if an dropout event occurred; FALSE otherwise.

Value

Returns a data.frame.

90 getRepeatedConfidenceIntervals

Examples

results <- getSimulationSurvival(pi1 = seq(0.3,0.6,0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50, maxNumberOfRawDatasetsPerStage = 5)

rawData <- getRawData(results)
head(rawData)
dim(rawData)

getRepeatedConfidenceIntervals

Get Repeated Confidence Intervals

Description

Calculates and returns the lower and upper limit of the repeated confidence intervals of the trial.

Usage

getRepeatedConfidenceIntervals(
design,
dataInput,
...,
directionUpper = TRUE,
tolerance = 1e-06,
stage = NA_integer_

)

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

... Further arguments to be passed to methods (cf. separate functions in "See Also"
below), e.g.,

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

getRepeatedConfidenceIntervals 91

intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple hypotheses. Five
options are available in multi-arm designs: "Dunnett", "Bonferroni",
"Simes", "Sidak", and "Hierarchical", default is "Dunnett". Four op-
tions are available in population enrichment designs: "SpiessensDebois"
(one subset only), "Bonferroni", "Simes", and "Sidak", default is "Simes".

varianceOption Defines the way to calculate the variance in multiple treat-
ment arms (> 2) or population enrichment designs for testing means. For
multiple arms, three options are available: "overallPooled", "pairwisePooled",
and "notPooled", default is "overallPooled". For enrichment designs,
the options are: "pooled", "pooledFromFull" (one subset only), and "notPooled",
default is "pooled".

stratifiedAnalysis For enrichment designs, typically a stratified analysis
should be chosen. For testing means and rates, also a non-stratified analysis
based on overall data can be performed. For survival data, only a stratified
analysis is possible (see Brannath et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

tolerance The numerical tolerance, default is 1e-06. Must be a positive numeric of length
1.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

The repeated confidence interval at a given stage of the trial contains the parameter values that are
not rejected using the specified sequential design. It can be calculated at each stage of the trial and
can thus be used as a monitoring tool.

The repeated confidence intervals are provided up to the specified stage.

Value

Returns a matrix with 2 rows and kMax columns containing the lower RCI limits in the first row
and the upper RCI limits in the second row, where each column represents a stage.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedPValues(), getStageResults(), getTestActions()

Examples

design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getRepeatedConfidenceIntervals(design, dataInput = data)

92 getRepeatedPValues

getRepeatedPValues Get Repeated P Values

Description

Calculates the repeated p-values for a given test results.

Usage

getRepeatedPValues(stageResults, ..., tolerance = 1e-06)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

tolerance The numerical tolerance, default is 1e-06. Must be a positive numeric of length
1.

Details

The repeated p-value at a given stage of the trial is defined as the smallest significance level under
which at given test design the test results obtain rejection of the null hypothesis. It can be calculated
at each stage of the trial and can thus be used as a monitoring tool.

The repeated p-values are provided up to the specified stage.

In multi-arm trials, the repeated p-values are defined separately for each treatment comparison
within the closed testing procedure.

Value

Returns a numeric vector of length kMax or in case of multi-arm stage results a matrix (each
column represents a stage, each row a comparison) containing the repeated p values.

Note on the dependency of mnormt

If intersectionTest = "Dunnett" or intersectionTest = "SpiessensDebois", or the design
is a conditional Dunnett design and the dataset is a multi-arm or enrichment dataset, rpact uses the
R package mnormt to calculate the analysis results.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getStageResults(), getTestActions()

https://cran.r-project.org/package=mnormt

getSampleSizeMeans 93

Examples

design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getRepeatedPValues(getStageResults(design, dataInput = data))

getSampleSizeMeans Get Sample Size Means

Description

Returns the sample size for testing means in one or two samples.

Usage

getSampleSizeMeans(
design = NULL,
...,
groups = 2,
normalApproximation = FALSE,
meanRatio = FALSE,
thetaH0 = ifelse(meanRatio, 1, 0),
alternative = seq(0.2, 1, 0.2),
stDev = 1,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. If TRUE, the variance is assumed to be
known, default is FALSE, i.e., the calculations are performed with the t distribu-
tion.

meanRatio If TRUE, the sample size for one-sided testing of H0: mu1 / mu2 = thetaH0 is
calculated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

94 getSampleSizeMeans

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

alternative The alternative hypothesis value for testing means. This can be a vector of as-
sumed alternatives, default is seq(0, 1, 0.2) (power calculations) or seq(0.2,
1, 0.2) (sample size calculations).

stDev The standard deviation under which the sample size or power calculation is per-
formed, default is 1. If meanRatio = TRUE is specified, stDev defines the coeffi-
cient of variation sigma / mu2. Must be a positive numeric of length 1.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

Details

At given design the function calculates the stage-wise (non-cumulated) and maximum sample size
for testing means. In a two treatment groups design, additionally, an allocation ratio = n1/n2 can be
specified. A null hypothesis value thetaH0 != 0 for testing the difference of two means or thetaH0
!= 1 for testing the ratio of two means can be specified. Critical bounds and stopping for futility
bounds are provided at the effect scale (mean, mean difference, or mean ratio, respectively) for each
sample size calculation separately.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

getSampleSizeRates 95

See Also

Other sample size functions: getSampleSizeRates(), getSampleSizeSurvival()

Examples

Calculate sample sizes in a fixed sample size parallel group design
with allocation ratio \code{n1 / n2 = 2} for a range of
alternative values 1, ..., 5 with assumed standard deviation = 3.5;
two-sided alpha = 0.05, power 1 - beta = 90%:
getSampleSizeMeans(alpha = 0.05, beta = 0.1, sided = 2, groups = 2,

alternative = seq(1, 5, 1), stDev = 3.5, allocationRatioPlanned = 2)

Calculate sample sizes in a three-stage Pocock paired comparison design testing
H0: mu = 2 for a range of alternative values 3,4,5 with assumed standard
deviation = 3.5; one-sided alpha = 0.05, power 1 - beta = 90%:
getSampleSizeMeans(getDesignGroupSequential(typeOfDesign = "P", alpha = 0.05,

sided = 1, beta = 0.1), groups = 1, thetaH0 = 2,
alternative = seq(3, 5, 1), stDev = 3.5)

getSampleSizeRates Get Sample Size Rates

Description

Returns the sample size for testing rates in one or two samples.

Usage

getSampleSizeRates(
design = NULL,
...,
groups = 2,
normalApproximation = TRUE,
riskRatio = FALSE,
thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = c(0.4, 0.5, 0.6),
pi2 = 0.2,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.

96 getSampleSizeRates

normalApproximation

If FALSE, the sample size for the case of one treatment group is calculated exactly
using the binomial distribution, default is TRUE.

riskRatio If TRUE, the sample size for one-sided testing of H0: pi1 / pi2 = thetaH0 is
calculated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

pi1 A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(0.2, 0.5, 0.1)
(power calculations and simulations) or seq(0.4, 0.6, 0.1) (sample size cal-
culations).

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

Details

At given design the function calculates the stage-wise (non-cumulated) and maximum sample size
for testing rates. In a two treatment groups design, additionally, an allocation ratio = n1/n2 can be
specified. If a null hypothesis value thetaH0 != 0 for testing the difference of two rates thetaH0 !=
1 for testing the risk ratio is specified, the sample size formula according to Farrington & Manning
(Statistics in Medicine, 1990) is used. Critical bounds and stopping for futility bounds are provided
at the effect scale (rate, rate difference, or rate ratio, respectively) for each sample size calculation
separately. For the two-sample case, the calculation here is performed at fixed pi2 as given as
argument in the function.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

getSampleSizeSurvival 97

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeMeans(), getSampleSizeSurvival()

Examples

Calculate the stage-wise sample sizes, maximum sample sizes, and the optimum
allocation ratios for a range of pi1 values when testing
H0: pi1 - pi2 = -0.1 within a two-stage O'Brien & Fleming design;
alpha = 0.05 one-sided, power 1 - beta = 90%:
getSampleSizeRates(getDesignGroupSequential(kMax = 2, alpha = 0.05,

beta = 0.1), groups = 2, thetaH0 = -0.1, pi1 = seq(0.4, 0.55, 0.025),
pi2 = 0.4, allocationRatioPlanned = 0)

Calculate the stage-wise sample sizes, maximum sample sizes, and the optimum
allocation ratios for a range of pi1 values when testing
H0: pi1 / pi2 = 0.80 within a three-stage O'Brien & Fleming design;
alpha = 0.025 one-sided, power 1 - beta = 90%:
getSampleSizeRates(getDesignGroupSequential(kMax = 3, alpha = 0.025,

beta = 0.1), groups = 2, riskRatio = TRUE, thetaH0 = 0.80,
pi1 = seq(0.3, 0.5, 0.025), pi2 = 0.3, allocationRatioPlanned = 0)

getSampleSizeSurvival Get Sample Size Survival

Description

Returns the sample size for testing the hazard ratio in a two treatment groups survival design.

Usage

getSampleSizeSurvival(
design = NULL,
...,
typeOfComputation = c("Schoenfeld", "Freedman", "HsiehFreedman"),
thetaH0 = 1,
pi1 = NA_real_,
pi2 = NA_real_,

98 getSampleSizeSurvival

lambda1 = NA_real_,
lambda2 = NA_real_,
median1 = NA_real_,
median2 = NA_real_,
kappa = 1,
hazardRatio = NA_real_,
piecewiseSurvivalTime = NA_real_,
allocationRatioPlanned = NA_real_,
eventTime = 12,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
followUpTime = NA_real_,
maxNumberOfSubjects = NA_real_,
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

typeOfComputation

Three options are available: "Schoenfeld", "Freedman", "HsiehFreedman",
the default is "Schoenfeld". For details, see Hsieh (Statistics in Medicine,
1992). For non-inferiority testing (i.e., thetaH0 != 1), only Schoenfeld’s for-
mula can be used.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

getSampleSizeSurvival 99

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

median1 The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

followUpTime The assumed (additional) follow-up time for the study, default is 6. The total
study duration is accrualTime + followUpTime.

maxNumberOfSubjects

If maxNumberOfSubjects > 0 is specified, the follow-up time for the required
number of events is determined.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

100 getSampleSizeSurvival

Details

At given design the function calculates the number of events and an estimate for the necessary num-
ber of subjects for testing the hazard ratio in a survival design. It also calculates the time when the
required events are expected under the given assumptions (exponentially, piecewise exponentially,
or Weibull distributed survival times and constant or non-constant piecewise accrual). Additionally,
an allocation ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

Optional argument accountForObservationTimes: if accountForObservationTimes = TRUE, the
number of subjects is calculated assuming specific accrual and follow-up time, default is TRUE.

The formula of Kim & Tsiatis (Biometrics, 1990) is used to calculate the expected number of events
under the alternative (see also Lakatos & Lan, Statistics in Medicine, 1992). These formulas are
generalized to piecewise survival times and non-constant piecewise accrual over time.

Optional argument accountForObservationTimes: if accountForObservationTimes = FALSE,
only the event rates are used for the calculation of the maximum number of subjects.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.
accrualIntensity itself is a value or a vector (depending on the length of accrualtime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

getSampleSizeSurvival 101

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all ele-
ments in accrualIntensity are smaller than 1, accrualIntensity defines the *relative* intensity
how subjects enter the trial. For example, accrualIntensity = c(0.1, 0.2) specifies that in the
second accrual interval the intensity is doubled as compared to the first accrual interval. The actual
(absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects. Note
that the default is accrualIntensity = 0.1 meaning that the *absolute* accrual intensity will be
calculated.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeMeans(), getSampleSizeRates()

Examples

Fixed sample size trial with median survival 20 vs. 30 months in treatment and
reference group, respectively, alpha = 0.05 (two-sided), and power 1 - beta = 90%.
20 subjects will be recruited per month up to 400 subjects, i.e., accrual time
is 20 months.
getSampleSizeSurvival(alpha = 0.05, sided = 2, beta = 0.1, lambda1 = log(2) / 20,

lambda2 = log(2) / 30, accrualTime = c(0,20), accrualIntensity = 20)

Fixed sample size with minimum required definitions, pi1 = c(0.4,0.5,0.6) and
pi2 = 0.2 at event time 12, accrual time 12 and follow-up time 6 as default,
only alpha = 0.01 is specified
getSampleSizeSurvival(alpha = 0.01)

Four stage O'Brien & Fleming group sequential design with minimum required
definitions, pi1 = c(0.4,0.5,0.6) and pi2 = 0.2 at event time 12,
accrual time 12 and follow-up time 6 as default
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 4))

For fixed sample design, determine necessary accrual time if 200 subjects and
30 subjects per time unit can be recruited
getSampleSizeSurvival(accrualTime = c(0), accrualIntensity = c(30),

maxNumberOfSubjects = 200)

Determine necessary accrual time if 200 subjects and if the first 6 time units
20 subjects per time unit can be recruited, then 30 subjects per time unit
getSampleSizeSurvival(accrualTime = c(0, 6), accrualIntensity = c(20, 30),

maxNumberOfSubjects = 200)

Determine maximum number of Subjects if the first 6 time units 20 subjects
per time unit can be recruited, and after 10 time units 30 subjects per time unit
getSampleSizeSurvival(accrualTime = c(0, 6, 10), accrualIntensity = c(20, 30))

Specify accrual time as a list
at <- list(

102 getSampleSizeSurvival

"0 - <6" = 20,
"6 - Inf" = 30)

getSampleSizeSurvival(accrualTime = at, maxNumberOfSubjects = 200)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30)

getSampleSizeSurvival(accrualTime = at)

Specify effect size for a two-stage group design with O'Brien & Fleming boundaries
Effect size is based on event rates at specified event time
needs to be specified because it should be shown that hazard ratio < 1
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

pi1 = 0.2, pi2 = 0.3, eventTime = 24)

Effect size is based on event rate at specified event
time for the reference group and hazard ratio
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

hazardRatio = 0.5, pi2 = 0.3, eventTime = 24)

Effect size is based on hazard rate for the reference group and hazard ratio
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

hazardRatio = 0.5, lambda2 = 0.02)

Specification of piecewise exponential survival time and hazard ratios
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
hazardRatio = c(1.5, 1.8, 2))

Specification of piecewise exponential survival time as a list and hazard ratios
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2))

Specification of piecewise exponential survival time for both treatment arms
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015, 0.03, 0.06))

Specification of piecewise exponential survival time as a list
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2))

Specify effect size based on median survival times
getSampleSizeSurvival(median1 = 5, median2 = 3)

Specify effect size based on median survival times of Weibull distribtion with
kappa = 2
getSampleSizeSurvival(median1 = 5, median2 = 3, kappa = 2)

getSimulatedRejectionsDelayedResponse 103

Identify minimal and maximal required subjects to
reach the required events in spite of dropouts
getSampleSizeSurvival(accrualTime = c(0, 18), accrualIntensity = c(20, 30),

lambda2 = 0.4, lambda1 = 0.3, followUpTime = Inf, dropoutRate1 = 0.001,
dropoutRate2 = 0.005)

getSampleSizeSurvival(accrualTime = c(0, 18), accrualIntensity = c(20, 30),
lambda2 = 0.4, lambda1 = 0.3, followUpTime = 0, dropoutRate1 = 0.001,
dropoutRate2 = 0.005)

getSimulatedRejectionsDelayedResponse

Simulates the rejection probability of a delayed response group se-
quential design with specified parameters. By default, delta = 0, i.e.,
the Type error rate is simulated.

Description

Simulates the rejection probability of a delayed response group sequential design with specified
parameters. By default, delta = 0, i.e., the Type error rate is simulated.

Usage

getSimulatedRejectionsDelayedResponse(
design,
...,
delta = 0,
iterations = 10000,
seed = NA_real_

)

getSimulationEnrichmentMeans

Get Simulation Enrichment Means

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size or testing means in an enrichment design testing situation.

Usage

getSimulationEnrichmentMeans(
design = NULL,
...,
effectList = NULL,
intersectionTest = c("Simes", "SpiessensDebois", "Bonferroni", "Sidak"),
stratifiedAnalysis = TRUE,

104 getSimulationEnrichmentMeans

adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_integer_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
stDevH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
selectPopulationsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

effectList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois",
"Bonferroni", "Simes", and "Sidak", default is "Simes".

stratifiedAnalysis

Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

getSimulationEnrichmentMeans 105

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs minNumberOfSubjectsPerStage refers
to the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

106 getSimulationEnrichmentMeans

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev. Must be a positive numeric of length 1.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power with specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

selectPopulationsFunction

Optionally, a function can be entered that defines the way of how populations
are selected. This function is allowed to depend on effectVector with length
populations and stage (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities, and
expected sample size at given number of subjects, parameter configuration, and population selection
rule in the enrichment situation. An allocation ratio can be specified referring to the ratio of number
of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 and/or stDevH1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedPopulations,
plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage,
conditionalPower, conditionalCriticalValue, overallEffects, and stDevH1. The function
has to contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

getSimulationEnrichmentMeans 107

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Assess a population selection strategy with one subset population.
If the subset is better than the full population, then the subset
is selected for the second stage, otherwise the full. Print and plot
design characteristics.

Define design
ds <- getDesignInverseNormal(kMax = 2)

Define subgroups and their prevalences
subGroups <- c("S", "R") # fixed names!
prevalences <- c(0.2, 0.8)

Define effect matrix and variability
effectR <- 0.2
m <- c()
for (effectS in seq(0, 0.5, 0.25)) {

m <- c(m, effectS, effectR)
}
effects <- matrix(m, byrow = TRUE, ncol = 2)
stDev <- c(0.4, 0.8)

Define effect list
el <- list(subGroups=subGroups, prevalences=prevalences, stDevs = stDev, effects = effects)

Perform simulation
simResultsPE <- getSimulationEnrichmentMeans(design = ds,

effectList = el, plannedSubjects = c(50, 100),
maxNumberOfIterations = 100)

print(simResultsPE)

Assess the design characteristics of a user defined selection
strategy in a three-stage design with no interim efficacy stop
using the inverse normal method for combining the stages.
Only the second interim is used for a selecting of a study
population. There is a small probability for stopping the trial
at the first interim.

Define design
ds <- getDesignInverseNormal(typeOfDesign = "noEarlyEfficacy", kMax = 3)

Define selection function
mySelection <- function(effectVector, stage) {

selectedPopulations <- rep(TRUE, 3)
if (stage == 2) {

selectedPopulations <- (effectVector >= c(1, 2, 3))
}
return(selectedPopulations)

108 getSimulationEnrichmentRates

}

Define subgroups and their prevalences
subGroups <- c("S1", "S12", "S2", "R") # fixed names!
prevalences <- c(0.2, 0.3, 0.4, 0.1)

effectR <- 1.5
effectS12 = 5
m <- c()
for (effectS1 in seq(0, 5, 1)) {

for (effectS2 in seq(0, 5, 1)) {
m <- c(m, effectS1, effectS12, effectS2, effectR)

}
}
effects <- matrix(m, byrow = TRUE, ncol = 4)
stDev <- 10

Define effect list
el <- list(subGroups=subGroups, prevalences=prevalences, stDevs = stDev, effects = effects)

Perform simulation
simResultsPE <- getSimulationEnrichmentMeans(design = ds,

effectList = el,
typeOfSelection = "userDefined",
selectPopulationsFunction = mySelection,
intersectionTest = "Simes",
plannedSubjects = c(50, 100, 150),
maxNumberOfIterations = 100)

print(simResultsPE)
if (require(ggplot2)) plot(simResultsPE, type = 3)

getSimulationEnrichmentRates

Get Simulation Enrichment Rates

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing rates in an enrichment design testing situation.

Usage

getSimulationEnrichmentRates(
design = NULL,
...,
effectList = NULL,
intersectionTest = c("Simes", "SpiessensDebois", "Bonferroni", "Sidak"),
stratifiedAnalysis = TRUE,
directionUpper = TRUE,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),

getSimulationEnrichmentRates 109

successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
piTreatmentH1 = NA_real_,
piControlH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
selectPopulationsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

effectList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois",
"Bonferroni", "Simes", and "Sidak", default is "Simes".

stratifiedAnalysis

Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

110 getSimulationEnrichmentRates

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs minNumberOfSubjectsPerStage refers
to the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

getSimulationEnrichmentRates 111

piTreatmentH1 If specified, the assumed probabilities in the active arm under which the sample
size recalculation was performed and the conditional power was calculated.

piControlH1 If specified, the assumed probabilities in the control arm under which the sample
size recalculation was performed and the conditional power was calculated.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power with specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

selectPopulationsFunction

Optionally, a function can be entered that defines the way of how populations
are selected. This function is allowed to depend on effectVector with length
populations and stage (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the enrichment situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of piTreatmentH1 and/or piControlH1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedPopulations,
directionUpper, plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue, overallRatesTreatment,
overallRatesControl, piTreatmentH1, and piControlH1. The function has to contain the three-
dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

112 getSimulationEnrichmentSurvival

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Assess a population selection strategy with two subset populations and
a binary endpoint using a stratified analysis. No early efficacy stop,
weighted inverse normal method with weight sqrt(0.4).
pi2 <- c(0.3, 0.4, 0.3, 0.55)
pi1Seq <- seq(0.0, 0.2, 0.2)
pi1 <- matrix(rep(pi1Seq, length(pi2)), ncol = length(pi1Seq), byrow = TRUE) + pi2
effectList <- list(

subGroups = c("S1", "S2", "S12", "R"),
prevalences = c(0.1, 0.4, 0.2, 0.3),
piControl = pi2,
piTreatments = expand.grid(pi1[1,], pi1[2,], pi1[3,], pi1[4,])

)
ds <- getDesignInverseNormal(informationRates = c(0.4, 1),

typeOfDesign = "noEarlyEfficacy")
simResultsPE <- getSimulationEnrichmentRates(ds, plannedSubjects = c(150, 300),

allocationRatioPlanned = 1.5, directionUpper = TRUE,
effectList = effectList, stratifiedAnalysis = TRUE,
intersectionTest = "Sidak",
typeOfSelection = "epsilon", epsilonValue = 0.025,
maxNumberOfIterations = 100)

print(simResultsPE)

getSimulationEnrichmentSurvival

Get Simulation Enrichment Survival

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing hazard ratios in an enrichment design testing situation. In contrast to
getSimulationSurvival() (where survival times are simulated), normally distributed logrank test
statistics are simulated.

Usage

getSimulationEnrichmentSurvival(
design = NULL,
...,
effectList = NULL,
intersectionTest = c("Simes", "SpiessensDebois", "Bonferroni", "Sidak"),
stratifiedAnalysis = TRUE,
directionUpper = TRUE,

getSimulationEnrichmentSurvival 113

adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedEvents = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfEventsPerStage = NA_real_,
maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcEventsFunction = NULL,
selectPopulationsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

effectList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois",
"Bonferroni", "Simes", and "Sidak", default is "Simes".

stratifiedAnalysis

Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

114 getSimulationEnrichmentSurvival

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

minNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

maxNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

getSimulationEnrichmentSurvival 115

seed The seed to reproduce the simulation, default is a random seed.

calcEventsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power with specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

selectPopulationsFunction

Optionally, a function can be entered that defines the way of how populations
are selected. This function is allowed to depend on effectVector with length
populations and stage (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected event number at given number of events, parameter configuration, and population
selection rule in the enrichment situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment group as compared to the control group.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage (or calcEventsFunction) are defined.

calcEventsFunction
This function returns the number of events at given conditional power and conditional critical value
for specified testing situation. The function might depend on the variables stage, selectedPopulations,
plannedEvents, directionUpper, allocationRatioPlanned, minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
conditionalPower, conditionalCriticalValue, and overallEffects. The function has to
contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

116 getSimulationMeans

Examples

Assess a population selection strategy with one subset population and
a survival endpoint. The considered situations are defined through the
event rates yielding a range of hazard ratios in the subsets. Design
with O'Brien and Fleming alpha spending and a reassessment of event
number in the first interim based on conditional power and assumed
hazard ratio using weighted inverse normal combination test.

subGroups <- c("S", "R")
prevalences <- c(0.40, 0.60)

p2 <- c(0.3, 0.4)
range1 <- p2[1] + seq(0, 0.3, 0.05)

p1 <- c()
for (x1 in range1) {

p1 <- c(p1, x1, p2[2] + 0.1)
}
hazardRatios <- log(matrix(1 - p1, byrow = TRUE, ncol = 2)) /

matrix(log(1 - p2), byrow = TRUE, ncol = 2,
nrow = length(range1))

effectList <- list(subGroups=subGroups, prevalences=prevalences,
hazardRatios = hazardRatios)

ds <- getDesignInverseNormal(informationRates = c(0.3, 0.7, 1),
typeOfDesign = "asOF")

simResultsPE <- getSimulationEnrichmentSurvival(ds,
plannedEvents = c(40, 90, 120),
effectList = effectList,
typeOfSelection = "rbest", rValue = 2,
conditionalPower = 0.8, minNumberOfEventsPerStage = c(NA, 50, 30),
maxNumberOfEventsPerStage = c(NA, 150, 30), thetaH1 = 4/3,
maxNumberOfIterations = 100)

print(simResultsPE)

getSimulationMeans Get Simulation Means

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing means in a one or two treatment groups testing situation.

Usage

getSimulationMeans(
design = NULL,
...,
groups = 2L,
normalApproximation = TRUE,

getSimulationMeans 117

meanRatio = FALSE,
thetaH0 = ifelse(meanRatio, 1, 0),
alternative = seq(0, 1, 0.2),
stDev = 1,
plannedSubjects = NA_real_,
directionUpper = TRUE,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
stDevH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. Default is TRUE, i.e., normally dis-
tributed test statistics are generated. If FALSE, the t test is used for calculating
the p-values, i.e., t distributed test statistics are generated.

meanRatio If TRUE, the design characteristics for one-sided testing of H0: mu1 / mu2 =
thetaH0 are simulated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

alternative The alternative hypothesis value for testing means under which the data is sim-
ulated. This can be a vector of assumed alternatives, default is seq(0, 1, 0.2).

stDev The standard deviation under which the data is simulated, default is 1. If meanRatio
= TRUE is specified, stDev defines the coefficient of variation sigma / mu2. Must
be a positive numeric of length 1.

118 getSimulationMeans

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs minNumberOfSubjectsPerStage refers
to the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev. Must be a positive numeric of length 1.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with

getSimulationMeans 119

conditional power with specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of subjects and parameter configuration. Additionally, an
allocation ratio = n1/n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfSubjectsPerStage,
and maxNumberOfSubjectsPerStage (or calcSubjectsFunction) are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on variables stage, meanRatio,
thetaH0, groups, plannedSubjects, sampleSizesPerStage, directionUpper, allocationRatioPlanned,
minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue,
thetaH1, and stDevH1. The function has to contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,
• print() to print the object,
• summary() to display a summary of the object,
• plot() to plot the object,
• as.data.frame() to coerce the object to a data.frame,
• as.matrix() to coerce the object to a matrix.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median [range]; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

Example 1:
simulationResults <- getSimulationMeans(plannedSubjects = 40)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <- getSimulationMeans(plannedSubjects = 40)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData() can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

120 getSimulationMeans

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. alternative: The alternative hypothesis value.

4. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

5. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

6. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

7. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher’s combination test).

8. testStatisticsPerStage: The test statistic for each stage if only data from the considered
stage is taken into account.

9. effectEstimate: Overall simulated standardized effect estimate.

10. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

11. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Fixed sample size design with two groups, total sample size 40,
alternative = c(0, 0.2, 0.4, 0.8, 1), and standard deviation = 1 (the default)
getSimulationMeans(plannedSubjects = 40, maxNumberOfIterations = 10)

Increase number of simulation iterations and compare results
with power calculator using normal approximation
getSimulationMeans(alternative = 0:4, stDev = 5,

plannedSubjects = 40, maxNumberOfIterations = 1000)
getPowerMeans(alternative = 0:4, stDev = 5,

maxNumberOfSubjects = 40, normalApproximation = TRUE)

Do the same for a three-stage O'Brien&Fleming inverse
normal group sequential design with non-binding futility stops
designIN <- getDesignInverseNormal(typeOfDesign = "OF", futilityBounds = c(0, 0))
x <- getSimulationMeans(designIN, alternative = c(0:4), stDev = 5,

plannedSubjects = c(20, 40, 60), maxNumberOfIterations = 1000)
getPowerMeans(designIN, alternative = 0:4, stDev = 5,

maxNumberOfSubjects = 60, normalApproximation = TRUE)

Assess power and average sample size if a sample size increase is foreseen
at conditional power 80% for each subsequent stage based on observed overall
effect and specified minNumberOfSubjectsPerStage and
maxNumberOfSubjectsPerStage
getSimulationMeans(designIN, alternative = 0:4, stDev = 5,

getSimulationMultiArmMeans 121

plannedSubjects = c(20, 40, 60),
minNumberOfSubjectsPerStage = c(NA, 20, 20),
maxNumberOfSubjectsPerStage = c(NA, 80, 80),
conditionalPower = 0.8,
maxNumberOfIterations = 50)

Do the same under the assumption that a sample size increase only takes
place at the first interim. The sample size for the third stage is set equal
to the second stage sample size.
mySampleSizeCalculationFunction <- function(..., stage,

minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage,
sampleSizesPerStage,
conditionalPower,
conditionalCriticalValue,
thetaH1) {

if (stage == 2) {
stageSubjects <- 4 * (max(0, conditionalCriticalValue +

stats::qnorm(conditionalPower)))^2 / (max(1e-12, thetaH1))^2
stageSubjects <- min(max(minNumberOfSubjectsPerStage[stage],

stageSubjects), maxNumberOfSubjectsPerStage[stage])
} else {

stageSubjects <- sampleSizesPerStage[stage - 1]
}
return(stageSubjects)

}
getSimulationMeans(designIN, alternative = 2:4, stDev = 5,

plannedSubjects = c(20, 40, 60),
minNumberOfSubjectsPerStage = c(NA, 20, 20),
maxNumberOfSubjectsPerStage = c(NA, 160, 160),
conditionalPower = 0.8,
calcSubjectsFunction = mySampleSizeCalculationFunction,
maxNumberOfIterations = 50)

getSimulationMultiArmMeans

Get Simulation Multi-Arm Means

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing means in a multi-arm treatment groups testing situation.

Usage

getSimulationMultiArmMeans(
design = NULL,
...,
activeArms = 3L,
effectMatrix = NULL,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
muMaxVector = seq(0, 1, 0.2),

122 getSimulationMultiArmMeans

gED50 = NA_real_,
slope = 1,
intersectionTest = c("Dunnett", "Bonferroni", "Simes", "Sidak", "Hierarchical"),
stDev = 1,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_integer_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
stDevH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

activeArms The number of active treatment arms to be compared with control, default is 3.

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined". If "sigmoidEmax"
is selected, "gED50" and "slope" has to be entered to specify the ED50 and
the slope of the sigmoid Emax model. For "linear" and "sigmoidEmax",
"muMaxVector" specifies the range of effect sizes for the treatment group with
highest response. If "userDefined" is selected, "effectMatrix" has to be
entered.

muMaxVector Range of effect sizes for the treatment group with highest response for "linear"
and "sigmoidEmax" model, default is seq(0, 1, 0.2).

gED50 If typeOfShape = "sigmoidEmax" is selected, "gED50" has to be entered to
specify the ED50 of the sigmoid Emax model.

slope If typeOfShape = "sigmoidEmax" is selected, "slope" can be entered to spec-
ify the slope of the sigmoid Emax model, default is 1.

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system

getSimulationMultiArmMeans 123

of hypotheses. Five options are available in multi-arm designs: "Dunnett",
"Bonferroni", "Simes", "Sidak", and "Hierarchical", default is "Dunnett".

stDev The standard deviation under which the data is simulated, default is 1. If meanRatio
= TRUE is specified, stDev defines the coefficient of variation sigma / mu2. Must
be a positive numeric of length 1.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs minNumberOfSubjectsPerStage refers
to the minimum number of subjects per selected active arm.

124 getSimulationMultiArmMeans

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev. Must be a positive numeric of length 1.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power with specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment arms
are selected. This function is allowed to depend on effectVector with length
activeArms and stage (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 and/or stDevH1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical

getSimulationMultiArmMeans 125

value for specified testing situation. The function might depend on the variables stage, selectedArms,
plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage,
conditionalPower, conditionalCriticalValue, overallEffects, and stDevH1. The function
has to contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Assess a treatment-arm selection strategy with three active arms,
if the better of the arms is selected for the second stage, and
compare it with the no-selection case.
Assume a linear dose-response relationship
maxNumberOfIterations <- 100
designIN <- getDesignInverseNormal(typeOfDesign = "OF", kMax = 2)
sim <- getSimulationMultiArmMeans(design = designIN,

activeArms = 3, typeOfShape = "linear",
muMaxVector = seq(0,0.8,0.2),
intersectionTest = "Simes",
typeOfSelection = "best",
plannedSubjects = c(30,60),
maxNumberOfIterations = maxNumberOfIterations)

sim0 <- getSimulationMultiArmMeans(design = designIN,
activeArms = 3, typeOfShape = "linear",
muMaxVector = seq(0,0.8,0.2),
intersectionTest = "Simes",
typeOfSelection = "all",
plannedSubjects = c(30,60),
maxNumberOfIterations = maxNumberOfIterations)

sim$rejectAtLeastOne
sim$expectedNumberOfSubjects

sim0$rejectAtLeastOne
sim0$expectedNumberOfSubjects

126 getSimulationMultiArmMeans

Compare the power of the conditional Dunnett test with the power of the
combination test using Dunnett's intersection tests if no treatment arm
selection takes place. Asseume a linear dose-response relationship.
maxNumberOfIterations <- 100
designIN <- getDesignInverseNormal(typeOfDesign = "asUser",

userAlphaSpending = c(0, 0.025))
designCD <- getDesignConditionalDunnett(secondStageConditioning = TRUE)

index <- 1
for (design in c(designIN, designCD)) {

results <- getSimulationMultiArmMeans(design, activeArms = 3,
muMaxVector = seq(0, 1, 0.2), typeOfShape = "linear",
plannedSubjects = cumsum(rep(20, 2)),
intersectionTest = "Dunnett",
typeOfSelection = "all", maxNumberOfIterations = maxNumberOfIterations)

if (index == 1) {
drift <- results$effectMatrix[nrow(results$effectMatrix),]
plot(drift, results$rejectAtLeastOne, type = "l", lty = 1,

lwd = 3, col = "black", ylab = "Power")
} else {

lines(drift,results$rejectAtLeastOne, type = "l",
lty = index, lwd = 3, col = "red")

}
index <- index + 1

}
legend("topleft", legend=c("Combination Dunnett", "Conditional Dunnett"),

col=c("black", "red"), lty = (1:2), cex = 0.8)

Assess the design characteristics of a user defined selection
strategy in a two-stage design using the inverse normal method
with constant bounds. Stopping for futility due to
de-selection of all treatment arms.
designIN <- getDesignInverseNormal(typeOfDesign = "P", kMax = 2)

mySelection <- function(effectVector) {
selectedArms <- (effectVector >= c(0, 0.1, 0.3))
return(selectedArms)

}

results <- getSimulationMultiArmMeans(designIN, activeArms = 3,
muMaxVector = seq(0, 1, 0.2),
typeOfShape = "linear",
plannedSubjects = c(30,60),
intersectionTest = "Dunnett",
typeOfSelection = "userDefined",
selectArmsFunction = mySelection,
maxNumberOfIterations = 100)

options(rpact.summary.output.size = "medium")
summary(results)
if (require(ggplot2)) plot(results, type = c(5,3,9), grid = 4)

getSimulationMultiArmRates 127

getSimulationMultiArmRates

Get Simulation Multi-Arm Rates

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing rates in a multi-arm treatment groups testing situation.

Usage

getSimulationMultiArmRates(
design = NULL,
...,
activeArms = 3L,
effectMatrix = NULL,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
piMaxVector = seq(0.2, 0.5, 0.1),
piControl = 0.2,
gED50 = NA_real_,
slope = 1,
intersectionTest = c("Dunnett", "Bonferroni", "Simes", "Sidak", "Hierarchical"),
directionUpper = TRUE,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
piH1 = NA_real_,
piControlH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

128 getSimulationMultiArmRates

activeArms The number of active treatment arms to be compared with control, default is 3.

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined". If "sigmoidEmax"
is selected, "gED50" and "slope" has to be entered to specify the ED50 and
the slope of the sigmoid Emax model. For "linear" and "sigmoidEmax",
"muMaxVector" specifies the range of effect sizes for the treatment group with
highest response. If "userDefined" is selected, "effectMatrix" has to be
entered.

piMaxVector Range of assumed probabilities for the treatment group with highest response
for "linear" and "sigmoidEmax" model, default is seq(0, 1, 0.2).

piControl If specified, the assumed probability in the control arm for simulation and under
which the sample size recalculation is performed.

gED50 If typeOfShape = "sigmoidEmax" is selected, "gED50" has to be entered to
specify the ED50 of the sigmoid Emax model.

slope If typeOfShape = "sigmoidEmax" is selected, "slope" can be entered to spec-
ify the slope of the sigmoid Emax model, default is 1.

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett",
"Bonferroni", "Simes", "Sidak", and "Hierarchical", default is "Dunnett".

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

getSimulationMultiArmRates 129

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs minNumberOfSubjectsPerStage refers
to the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

piH1 If specified, the assumed probability in the active treatment arm(s) under which
the sample size recalculation is performed.

piControlH1 If specified, the assumed probability in the reference group (if different from
piControl) for which the conditional power was calculated.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with

130 getSimulationMultiArmRates

conditional power with specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment arms
are selected. This function is allowed to depend on effectVector with length
activeArms and stage (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of pi1H1 and/or piControl makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedArms,
directionUpper, plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue, overallRates,
overallRatesControl, piH1, and piControlH1. The function has to contain the three-dots argu-
ment ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Simulate the power of the combination test with two interim stages and
O'Brien & Fleming boundaries using Dunnett's intersection tests if the
best treatment arm is selected at first interim. Selection only take

getSimulationMultiArmSurvival 131

place if a non-negative treatment effect is observed (threshold = 0);
20 subjects per stage and treatment arm, simulation is performed for
four parameter configurations.
maxNumberOfIterations <- 50
designIN <- getDesignInverseNormal(typeOfDesign = "OF")

effectMatrix <- matrix(c(0.2,0.2,0.2,
0.4,0.4,0.4,
0.4,0.5,0.5,
0.4,0.5,0.6),
byrow = TRUE, nrow = 4, ncol = 3)

x <- getSimulationMultiArmRates(design = designIN, typeOfShape = "userDefined",
effectMatrix = effectMatrix , piControl = 0.2,
typeOfSelection = "best", threshold = 0, intersectionTest = "Dunnett",
plannedSubjects = c(20, 40, 60),
maxNumberOfIterations = maxNumberOfIterations)

summary(x)

getSimulationMultiArmSurvival

Get Simulation Multi-Arm Survival

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing hazard ratios in a multi-arm treatment groups testing situation. In contrast
to getSimulationSurvival() (where survival times are simulated), normally distributed logrank
test statistics are simulated.

Usage

getSimulationMultiArmSurvival(
design = NULL,
...,
activeArms = 3L,
effectMatrix = NULL,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
omegaMaxVector = seq(1, 2.6, 0.4),
gED50 = NA_real_,
slope = 1,
intersectionTest = c("Dunnett", "Bonferroni", "Simes", "Sidak", "Hierarchical"),
directionUpper = TRUE,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
correlationComputation = c("alternative", "null"),
epsilonValue = NA_real_,
rValue = NA_real_,

132 getSimulationMultiArmSurvival

threshold = -Inf,
plannedEvents = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfEventsPerStage = NA_real_,
maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcEventsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

activeArms The number of active treatment arms to be compared with control, default is 3.

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined". If "sigmoidEmax"
is selected, "gED50" and "slope" has to be entered to specify the ED50 and
the slope of the sigmoid Emax model. For "linear" and "sigmoidEmax",
"muMaxVector" specifies the range of effect sizes for the treatment group with
highest response. If "userDefined" is selected, "effectMatrix" has to be
entered.

omegaMaxVector Range of hazard ratios with highest response for "linear" and "sigmoidEmax"
model, default is seq(1, 2.6, 0.4).

gED50 If typeOfShape = "sigmoidEmax" is selected, "gED50" has to be entered to
specify the ED50 of the sigmoid Emax model.

slope If typeOfShape = "sigmoidEmax" is selected, "slope" can be entered to spec-
ify the slope of the sigmoid Emax model, default is 1.

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett",
"Bonferroni", "Simes", "Sidak", and "Hierarchical", default is "Dunnett".

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".

getSimulationMultiArmSurvival 133

For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

correlationComputation

If correlationComputation = "alternative", for simulating log-rank statis-
tics in the many-to-one design, a correlation matrix according to Deng et al.
(Biometrics, 2019) accounting for the respective alternative is used; if correlationComputation
= "null", a constant correlation matrix valid under the null, i.e., not accounting
for the alternative is used, default is "alternative".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

minNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

maxNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified

134 getSimulationMultiArmSurvival

conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcEventsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power with specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment arms
are selected. This function is allowed to depend on effectVector with length
activeArms and stage (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage (or calcEventsFunction) are defined.

calcEventsFunction
This function returns the number of events at given conditional power and conditional critical value
for specified testing situation. The function might depend on the variables stage, selectedArms,
plannedEvents, directionUpper, allocationRatioPlanned, minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
conditionalPower, conditionalCriticalValue, and overallEffects. The function has to
contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,
• print() to print the object,
• summary() to display a summary of the object,
• plot() to plot the object,
• as.data.frame() to coerce the object to a data.frame,
• as.matrix() to coerce the object to a matrix.

getSimulationRates 135

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Assess different selection rules for a two-stage survival design with
O'Brien & Fleming alpha spending boundaries and (non-binding) stopping
for futility if the test statistic is negative.
Number of events at the second stage is adjusted based on conditional
power 80% and specified minimum and maximum number of Events.
maxNumberOfIterations <- 50
design <- getDesignInverseNormal(typeOfDesign = "asOF", futilityBounds = 0)

y1 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes", typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1, 2, 0.5), gED50 = 2, slope = 4,
typeOfSelection = "best", conditionalPower = 0.8,
minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = maxNumberOfIterations,
plannedEvents = c(75, 120))

y2 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes", typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1,2,0.5), gED50 = 2, slope = 4,
typeOfSelection = "epsilon", epsilonValue = 0.2,
effectMeasure = "effectEstimate",
conditionalPower = 0.8, minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = maxNumberOfIterations,
plannedEvents = c(75, 120))

y1$effectMatrix

y1$rejectAtLeastOne
y2$rejectAtLeastOne

y1$selectedArms
y2$selectedArms

getSimulationRates Get Simulation Rates

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing rates in a one or two treatment groups testing situation.

136 getSimulationRates

Usage

getSimulationRates(
design = NULL,
...,
groups = 2L,
normalApproximation = TRUE,
riskRatio = FALSE,
thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = seq(0.2, 0.5, 0.1),
pi2 = NA_real_,
plannedSubjects = NA_real_,
directionUpper = TRUE,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
pi1H1 = NA_real_,
pi2H1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. Default is FALSE for testing means (i.e.,
the t test is used) and TRUE for testing rates and the hazard ratio. For testing rates,
if normalApproximation = FALSE is specified, the binomial test (one sample)
or the exact test of Fisher (two samples) is used for calculating the p-values. In
the survival setting normalApproximation = FALSE has no effect.

riskRatio If TRUE, the design characteristics for one-sided testing of H0: pi1 / pi2 =
thetaH0 are simulated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

getSimulationRates 137

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

pi1 A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(0.2, 0.5, 0.1)
(power calculations and simulations) or seq(0.4, 0.6, 0.1) (sample size cal-
culations).

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs minNumberOfSubjectsPerStage refers
to the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

pi1H1 If specified, the assumed probability in the active treatment group if two treat-
ment groups are considered, or the assumed probability for a one treatment
group design, for which the conditional power was calculated.

138 getSimulationRates

pi2H1 If specified, the assumed probability in the reference group if two treatment
groups are considered, for which the conditional power was calculated.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power with specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of subjects and parameter configuration. Additionally, an
allocation ratio = n1/n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

The definition of pi1H1 and/or pi2H1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on variables stage, riskRatio,
thetaH0, groups, plannedSubjects, sampleSizesPerStage, directionUpper, allocationRatioPlanned,
minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue,
overallRate, farringtonManningValue1, and farringtonManningValue2. The function has to
contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median [range]; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

getSimulationRates 139

Example 1:
simulationResults <- getSimulationRates(plannedSubjects = 40)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <- getSimulationRates(plannedSubjects = 40)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData() can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. pi1: The assumed or derived event rate in the treatment group (if available).

4. pi2: The assumed or derived event rate in the control group (if available).

5. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

6. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

7. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

8. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher combination test)’

9. testStatisticsPerStage: The test statistic for each stage if only data from the considered
stage is taken into account.

10. overallRate1: The cumulative rate in treatment group 1.

11. overallRate2: The cumulative rate in treatment group 2.

12. stagewiseRates1: The stage-wise rate in treatment group 1.

13. stagewiseRates2: The stage-wise rate in treatment group 2.

14. sampleSizesPerStage1: The stage-wise sample size in treatment group 1.

15. sampleSizesPerStage2: The stage-wise sample size in treatment group 2.

16. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

17. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with pi1H1 and pi2H1.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

140 getSimulationRates

Examples

Fixed sample size design (two groups) with total sample
size 120, pi1 = (0.3,0.4,0.5,0.6) and pi2 = 0.3
getSimulationRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = 120, maxNumberOfIterations = 10)

Increase number of simulation iterations and compare results with power calculator
getSimulationRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = 120, maxNumberOfIterations = 50)
getPowerRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, maxNumberOfSubjects = 120)

Do the same for a two-stage Pocock inverse normal group sequential
design with non-binding futility stops
designIN <- getDesignInverseNormal(typeOfDesign = "P", futilityBounds = c(0))
getSimulationRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = c(40, 80), maxNumberOfIterations = 50)
getPowerRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, maxNumberOfSubjects = 80)

Assess power and average sample size if a sample size reassessment is
foreseen at conditional power 80% for the subsequent stage (decrease and increase)
based on observed overall (cumulative) rates and specified minNumberOfSubjectsPerStage
and maxNumberOfSubjectsPerStage

Do the same under the assumption that a sample size increase only takes place
if the rate difference exceeds the value 0.1 at interim. For this, the sample
size recalculation method needs to be redefined:
mySampleSizeCalculationFunction <- function(..., stage,

plannedSubjects,
minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage,
conditionalPower,
conditionalCriticalValue,
overallRate) {

if (overallRate[1] - overallRate[2] < 0.1) {
return(plannedSubjects[stage] - plannedSubjects[stage - 1])

} else {
rateUnderH0 <- (overallRate[1] + overallRate[2]) / 2
stageSubjects <- 2 * (max(0, conditionalCriticalValue *

sqrt(2 * rateUnderH0 * (1 - rateUnderH0)) +
stats::qnorm(conditionalPower) * sqrt(overallRate[1] *
(1 - overallRate[1]) + overallRate[2] * (1 - overallRate[2]))))^2 /
(max(1e-12, (overallRate[1] - overallRate[2])))^2

stageSubjects <- ceiling(min(max(
minNumberOfSubjectsPerStage[stage],
stageSubjects), maxNumberOfSubjectsPerStage[stage]))

return(stageSubjects)
}

}
getSimulationRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = c(40, 80), minNumberOfSubjectsPerStage = c(40, 20),
maxNumberOfSubjectsPerStage = c(40, 160), conditionalPower = 0.8,
calcSubjectsFunction = mySampleSizeCalculationFunction, maxNumberOfIterations = 50)

getSimulationSurvival 141

getSimulationSurvival Get Simulation Survival

Description

Returns the analysis times, power, stopping probabilities, conditional power, and expected sample
size for testing the hazard ratio in a two treatment groups survival design.

Usage

getSimulationSurvival(
design = NULL,
...,
thetaH0 = 1,
directionUpper = TRUE,
pi1 = NA_real_,
pi2 = NA_real_,
lambda1 = NA_real_,
lambda2 = NA_real_,
median1 = NA_real_,
median2 = NA_real_,
hazardRatio = NA_real_,
kappa = 1,
piecewiseSurvivalTime = NA_real_,
allocation1 = 1,
allocation2 = 1,
eventTime = 12,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12,
maxNumberOfSubjects = NA_real_,
plannedEvents = NA_real_,
minNumberOfEventsPerStage = NA_real_,
maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,
maxNumberOfRawDatasetsPerStage = 0,
longTimeSimulationAllowed = FALSE,
seed = NA_real_,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

142 getSimulationSurvival

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

median1 The assumed median survival time in the treatment group, there is no default.
median2 The assumed median survival time in the reference group, there is no default.

Must be a positive numeric of length 1.
hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in

both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

getSimulationSurvival 143

allocation1 The number how many subjects are assigned to treatment 1 in a subsequent
order, default is 1

allocation2 The number how many subjects are assigned to treatment 2 in a subsequent
order, default is 1

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. If accrual time and accrual
intensity are specified, this will be calculated. Must be a positive integer of
length 1.

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

minNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

maxNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

144 getSimulationSurvival

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

maxNumberOfRawDatasetsPerStage

The number of raw datasets per stage that shall be extracted and saved as data.frame,
default is 0. getRawData() can be used to get the extracted raw data from the
object.

longTimeSimulationAllowed

Logical that indicates whether long time simulations that consumes more than
30 seconds are allowed or not, default is FALSE.

seed The seed to reproduce the simulation, default is a random seed.

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of events, number of subjects, and parameter configura-
tion. It also simulates the time when the required events are expected under the given assump-
tions (exponentially, piecewise exponentially, or Weibull distributed survival times and constant
or non-constant piecewise accrual). Additionally, integers allocation1 and allocation2 can be
specified that determine the number allocated to treatment group 1 and treatment group 2, respec-
tively. More precisely, unequal randomization ratios must be specified via the two integer arguments
allocation1 and allocation2 which describe how many subjects are consecutively enrolled in
each group, respectively, before a subject is assigned to the other group. For example, the arguments
allocation1 = 2, allocation2 = 1, maxNumberOfSubjects = 300 specify 2:1 randomization with
200 subjects randomized to intervention and 100 to control. (Caveat: Do not use allocation1 =
200, allocation2 = 100, maxNumberOfSubjects = 300 as this would imply that the 200 interven-
tion subjects are enrolled prior to enrollment of any control subjects.)

conditionalPower
The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage are defined.

Note that numberOfSubjects, numberOfSubjects1, and numberOfSubjects2 in the output are
expected number of subjects.

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

getSimulationSurvival 145

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.
accrualIntensity itself is a value or a vector (depending on the length of accrualtime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all ele-
ments in accrualIntensity are smaller than 1, accrualIntensity defines the *relative* intensity
how subjects enter the trial. For example, accrualIntensity = c(0.1, 0.2) specifies that in the
second accrual interval the intensity is doubled as compared to the first accrual interval. The actual
(absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects. Note
that the default is accrualIntensity = 0.1 meaning that the *absolute* accrual intensity will be
calculated.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median [range]; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

Example 1:
simulationResults <- getSimulationSurvival(maxNumberOfSubjects = 100, plannedEvents
= 30)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <- getSimulationSurvival(maxNumberOfSubjects = 100, plannedEvents
= 30)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData() can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

146 getSimulationSurvival

1. iterationNumber: The number of the simulation iteration.
2. stageNumber: The stage.
3. pi1: The assumed or derived event rate in the treatment group.
4. pi2: The assumed or derived event rate in the control group.
5. hazardRatio: The hazard ratio under consideration (if available).
6. analysisTime: The analysis time.
7. numberOfSubjects: The number of subjects under consideration when the (interim) analysis

takes place.
8. eventsPerStage1: The observed number of events per stage in treatment group 1.
9. eventsPerStage2: The observed number of events per stage in treatment group 2.

10. eventsPerStage: The observed number of events per stage in both treatment groups.
11. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.
12. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.
13. eventsNotAchieved: 1 if number of events could not be reached with observed number of

subjects, 0 otherwise.
14. testStatistic: The test statistic that is used for the test decision, depends on which design

was chosen (group sequential, inverse normal, or Fisher combination test)’
15. logRankStatistic: Z-score statistic which corresponds to a one-sided log-rank test at con-

sidered stage.
16. hazardRatioEstimateLR: The estimated hazard ratio, derived from the log-rank statistic.
17. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE

otherwise.
18. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for

selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1.

Raw Data

getRawData() can be used to get the simulated raw data from the object as data.frame. Note
that getSimulationSurvival() must called before with maxNumberOfRawDatasetsPerStage >
0. The data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.
2. stopStage: The stage of stopping.
3. subjectId: The subject id (increasing number 1, 2, 3, ...)
4. accrualTime: The accrual time, i.e., the time when the subject entered the trial.
5. treatmentGroup: The treatment group number (1 or 2).
6. survivalTime: The survival time of the subject.
7. dropoutTime: The dropout time of the subject (may be NA).
8. observationTime: The specific observation time.
9. timeUnderObservation: The time under observation is defined as follows:

if (event == TRUE)
timeUnderObservation <- survivalTime;
else if (dropoutEvent == TRUE)
timeUnderObservation <- dropoutTime;
else
timeUnderObservation <- observationTime - accrualTime;

getSimulationSurvival 147

10. event: TRUE if an event occurred; FALSE otherwise.

11. dropoutEvent: TRUE if an dropout event occurred; FALSE otherwise.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Fixed sample size with minimum required definitions, pi1 = (0.3,0.4,0.5,0.6) and
pi2 = 0.3 at event time 12, and accrual time 24
getSimulationSurvival(pi1 = seq(0.3,0.6,0.1), pi2 = 0.3, eventTime = 12,

accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 10)

Increase number of simulation iterations
getSimulationSurvival(pi1 = seq(0.3,0.6,0.1), pi2 = 0.3, eventTime = 12,

accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

Determine necessary accrual time with default settings if 200 subjects and
30 subjects per time unit can be recruited
getSimulationSurvival(plannedEvents = 40, accrualTime = 0,

accrualIntensity = 30, maxNumberOfSubjects = 200, maxNumberOfIterations = 50)

Determine necessary accrual time with default settings if 200 subjects and
if the first 6 time units 20 subjects per time unit can be recruited,
then 30 subjects per time unit
getSimulationSurvival(plannedEvents = 40, accrualTime = c(0, 6),

accrualIntensity = c(20, 30), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

Determine maximum number of Subjects with default settings if the first
6 time units 20 subjects per time unit can be recruited, and after
10 time units 30 subjects per time unit
getSimulationSurvival(plannedEvents = 40, accrualTime = c(0, 6, 10),

accrualIntensity = c(20, 30), maxNumberOfIterations = 50)

Specify accrual time as a list
at <- list(

"0 - <6" = 20,
"6 - Inf" = 30)

getSimulationSurvival(plannedEvents = 40, accrualTime = at,
maxNumberOfSubjects = 200, maxNumberOfIterations = 50)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30)

getSimulationSurvival(plannedEvents = 40, accrualTime = at, maxNumberOfIterations = 50)

Specify effect size for a two-stage group sequential design with

148 getSimulationSurvival

O'Brien & Fleming boundaries. Effect size is based on event rates
at specified event time, directionUpper = FALSE needs to be specified
because it should be shown that hazard ratio < 1
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

pi1 = 0.2, pi2 = 0.3, eventTime = 24, plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, directionUpper = FALSE, maxNumberOfIterations = 50)

As above, but with a three-stage O'Brien and Fleming design with
specified information rates, note that planned events consists of integer values
d3 <- getDesignGroupSequential(informationRates = c(0.4, 0.7, 1))
getSimulationSurvival(design = d3, pi1 = 0.2, pi2 = 0.3, eventTime = 24,

plannedEvents = round(d3$informationRates * 40),
maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50)

Effect size is based on event rate at specified event time for the reference
group and hazard ratio, directionUpper = FALSE needs to be specified because
it should be shown that hazard ratio < 1
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2), hazardRatio = 0.5,

pi2 = 0.3, eventTime = 24, plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
directionUpper = FALSE, maxNumberOfIterations = 50)

Effect size is based on hazard rate for the reference group and
hazard ratio, directionUpper = FALSE needs to be specified because
it should be shown that hazard ratio < 1
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

hazardRatio = 0.5, lambda2 = 0.02, plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50)

Specification of piecewise exponential survival time and hazard ratios,
note that in getSimulationSurvival only on hazard ratio is used
in the case that the survival time is piecewise expoential
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
hazardRatio = 1.5, plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

pws <- list(
"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5),
plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

Specification of piecewise exponential survival time for both treatment arms
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015, 0.03, 0.06), plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, maxNumberOfIterations = 50)

Specification of piecewise exponential survival time as a list,
note that in getSimulationSurvival only on hazard ratio
(not a vector) can be used
pws <- list(

getSimulationSurvival 149

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = 1.5,
plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

Specification of piecewise exponential survival time and delayed effect
(response after 5 time units)
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.01, 0.02, 0.06), plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, maxNumberOfIterations = 50)

Specify effect size based on median survival times
getSimulationSurvival(median1 = 5, median2 = 3, plannedEvents = 40,

maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50)

Specify effect size based on median survival
times of Weibull distribtion with kappa = 2
getSimulationSurvival(median1 = 5, median2 = 3, kappa = 2,

plannedEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE, maxNumberOfIterations = 50)

Perform recalculation of number of events based on conditional power for a
three-stage design with inverse normal combination test, where the conditional power
is calculated under the specified effect size thetaH1 = 1.3 and up to a four-fold
increase in originally planned sample size (number of events) is allowed
Note that the first value in minNumberOfEventsPerStage and
maxNumberOfEventsPerStage is arbitrary, i.e., it has no effect.
dIN <- getDesignInverseNormal(informationRates = c(0.4, 0.7, 1))

resultsWithSSR1 <- getSimulationSurvival(design = dIN,
hazardRatio = seq(1, 1.6, 0.1),
pi2 = 0.3, conditionalPower = 0.8, thetaH1 = 1.3,
plannedEvents = c(58, 102, 146),
minNumberOfEventsPerStage = c(NA, 44, 44),
maxNumberOfEventsPerStage = 4 * c(NA, 44, 44),
maxNumberOfSubjects = 800, maxNumberOfIterations = 50)

resultsWithSSR1

If thetaH1 is unspecified, the observed hazard ratio estimate
(calculated from the log-rank statistic) is used for performing the
recalculation of the number of events
resultsWithSSR2 <- getSimulationSurvival(design = dIN,

hazardRatio = seq(1, 1.6, 0.1),
pi2 = 0.3, conditionalPower = 0.8, plannedEvents = c(58, 102, 146),
minNumberOfEventsPerStage = c(NA, 44, 44),
maxNumberOfEventsPerStage = 4 * c(NA, 44, 44),
maxNumberOfSubjects = 800, maxNumberOfIterations = 50)

resultsWithSSR2

Compare it with design without event size recalculation
resultsWithoutSSR <- getSimulationSurvival(design = dIN,

hazardRatio = seq(1, 1.6, 0.1), pi2 = 0.3,

150 getStageResults

plannedEvents = c(58, 102, 145), maxNumberOfSubjects = 800,
maxNumberOfIterations = 50)

resultsWithoutSSR$overallReject
resultsWithSSR1$overallReject
resultsWithSSR2$overallReject

Confirm that event size racalcuation increases the Type I error rate,
i.e., you have to use the combination test
dGS <- getDesignGroupSequential(informationRates = c(0.4, 0.7, 1))
resultsWithSSRGS <- getSimulationSurvival(design = dGS, hazardRatio = seq(1),

pi2 = 0.3, conditionalPower = 0.8, plannedEvents = c(58, 102, 145),
minNumberOfEventsPerStage = c(NA, 44, 44),
maxNumberOfEventsPerStage = 4 * c(NA, 44, 44),
maxNumberOfSubjects = 800, maxNumberOfIterations = 50)

resultsWithSSRGS$overallReject

Set seed to get reproduceable results
identical(

getSimulationSurvival(plannedEvents = 40, maxNumberOfSubjects = 200,
seed = 99)$analysisTime,

getSimulationSurvival(plannedEvents = 40, maxNumberOfSubjects = 200,
seed = 99)$analysisTime

)

getStageResults Get Stage Results

Description

Returns summary statistics and p-values for a given data set and a given design.

Usage

getStageResults(design, dataInput, ..., stage = NA_integer_)

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

... Further (optional) arguments to be passed:

thetaH0 The null hypothesis value, default is 0 for the normal and the binary
case (testing means and rates, respectively), it is 1 for the survival case (test-
ing the hazard ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is,
in case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

getStageResults 151

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2)
can be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified
for defining the null hypothesis H0: pi = thetaH0.

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

directionUpper The direction of one-sided testing. Default is TRUE which
means that larger values of the test statistics yield smaller p-values.

intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple hypotheses. Five
options are available in multi-arm designs: "Dunnett", "Bonferroni",
"Simes", "Sidak", and "Hierarchical", default is "Dunnett". Four op-
tions are available in population enrichment designs: "SpiessensDebois"
(one subset only), "Bonferroni", "Simes", and "Sidak", default is "Simes".

varianceOption Defines the way to calculate the variance in multiple treat-
ment arms (> 2) or population enrichment designs for testing means. For
multiple arms, three options are available: "overallPooled", "pairwisePooled",
and "notPooled", default is "overallPooled". For enrichment designs,
the options are: "pooled", "pooledFromFull" (one subset only), and "notPooled",
default is "pooled".

stratifiedAnalysis For enrichment designs, typically a stratified analysis
should be chosen. For testing means and rates, also a non-stratified analysis
based on overall data can be performed. For survival data, only a stratified
analysis is possible (see Brannath et al., 2009), default is TRUE.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

Calculates and returns the stage results of the specified design and data input at the specified stage.

Value

Returns a StageResults object.

• names to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

152 getTestActions

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getTestActions()

Examples

design <- getDesignInverseNormal()
dataRates <- getDataset(

n1 = c(10, 10),
n2 = c(20, 20),
events1 = c(8, 10),
events2 = c(10, 16))

getStageResults(design, dataRates)

getTestActions Get Test Actions

Description

Returns test actions.

Usage

getTestActions(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Only available for backward compatibility.

Details

Returns the test actions of the specified design and stage results at the specified stage.

Value

Returns a character vector of length kMax Returns a numeric vector of length kMaxcontaining the
test actions of each stage.

getWideFormat 153

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults()

Examples

design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getTestActions(getStageResults(design, dataInput = data))

getWideFormat Get Wide Format

Description

Returns the specified dataset as a data.frame in so-called wide format.

Usage

getWideFormat(dataInput)

Details

In the wide format (unstacked), the data are presented with each different data variable in a separate
column, i.e., the different groups are in separate columns.

Value

A data.frame will be returned.

See Also

getLongFormat() for returning the dataset as a data.frame in long format.

154 kable.ParameterSet

kable Create tables in Markdown

Description

The kable() function returns a single table for a single object that inherits from class ParameterSet.

Usage

kable(x, ...)

Arguments

x The object that inherits from ParameterSet.

... Other arguments (see kable).

Details

Generic to represent a parameter set in Markdown.

kable.ParameterSet Create output in Markdown

Description

The kable() function returns the output of the specified object formatted in Markdown.

Usage

kable.ParameterSet(x, ...)

Arguments

x A ParameterSet. If x does not inherit from class ParameterSet, knitr::kable(x)
will be returned.

... Other arguments (see kable).

Details

Generic function to represent a parameter set in Markdown. Use options("rpact.print.heading.base.number"
= "NUMBER") (where NUMBER is an integer value >= -1) to specify the heading level. The default is
options("rpact.print.heading.base.number" = "0"), i.e., the top headings start with ## in
Markdown. options("rpact.print.heading.base.number" = "-1") means that all headings
will be written bold but are not explicit defined as header.

length.TrialDesignSet 155

length.TrialDesignSet Length of Trial Design Set

Description

Returns the number of designs in a TrialDesignSet.

Usage

S3 method for class 'TrialDesignSet'
length(x)

Arguments

x A TrialDesignSet object.

Details

Is helpful for iteration over all designs in a design set with "[index]"-syntax.

Value

Returns a non-negative integer of length 1 representing the number of design in the TrialDesignSet.

Examples

designSet <- getDesignSet(design = getDesignGroupSequential(), alpha = c(0.01, 0.05))
length(designSet)

names.AnalysisResults Names of a Analysis Results Object

Description

Function to get the names of an AnalysisResults object.

Usage

S3 method for class 'AnalysisResults'
names(x)

Arguments

x An AnalysisResults object created by getAnalysisResults().

Details

Returns the names of an analysis results that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

156 names.SimulationResults

names.FieldSet Names of a Field Set Object

Description

Function to get the names of a FieldSet object.

Usage

S3 method for class 'FieldSet'
names(x)

Arguments

x A FieldSet object.

Details

Returns the names of a field set that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

names.SimulationResults

Names of a Simulation Results Object

Description

Function to get the names of a SimulationResults object.

Usage

S3 method for class 'SimulationResults'
names(x)

Arguments

x A SimulationResults object created by getSimulationResults[MultiArm/Enrichment][Means/Rates/Survival].

Details

Returns the names of a simulation results that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

names.StageResults 157

names.StageResults Names of a Stage Results Object

Description

Function to get the names of a StageResults object.

Usage

S3 method for class 'StageResults'
names(x)

Arguments

x A StageResults object.

Details

Returns the names of stage results that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

names.TrialDesignSet Names of a Trial Design Set Object

Description

Function to get the names of a TrialDesignSet object.

Usage

S3 method for class 'TrialDesignSet'
names(x)

Arguments

x A TrialDesignSet object.

Details

Returns the names of a design set that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

Examples

designSet <- getDesignSet(design = getDesignGroupSequential(), alpha = c(0.01, 0.05))
names(designSet)

158 param_accrualIntensityType

NumberOfSubjects Number Of Subjects

Description

Class for the definition of number of subjects results.

Details

NumberOfSubjects is a class for the definition of number of subjects results.

ParameterSet Parameter Set

Description

Basic class for parameter sets.

Details

The parameter set implements basic functions for a set of parameters.

param_accrualIntensity

Parameter Description: Accrual Intensity

Description

Parameter Description: Accrual Intensity

Arguments

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

param_accrualIntensityType

Parameter Description: Accrual Intensity Type

Description

Parameter Description: Accrual Intensity Type

Arguments

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

param_accrualTime 159

param_accrualTime Parameter Description: Accrual Time

Description

Parameter Description: Accrual Time

Arguments

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

param_activeArms Parameter Description: Active Arms

Description

Parameter Description: Active Arms

Arguments

activeArms The number of active treatment arms to be compared with control, default is 3.

param_adaptations Parameter Description: Adaptations

Description

Parameter Description: Adaptations

Arguments

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

param_allocationRatioPlanned

Parameter Description: Allocation Ratio Planned

Description

Parameter Description: Allocation Ratio Planned

Arguments

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

160 param_alternative

param_allocationRatioPlanned_sampleSize

Parameter Description: Allocation Ratio Planned With Optimum Op-
tion

Description

Parameter Description: Allocation Ratio Planned With Optimum Option

Arguments

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

param_alpha Parameter Description: Alpha

Description

Parameter Description: Alpha

Arguments

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

param_alternative Parameter Description: Alternative

Description

Parameter Description: Alternative

Arguments

alternative The alternative hypothesis value for testing means. This can be a vector of as-
sumed alternatives, default is seq(0, 1, 0.2) (power calculations) or seq(0.2,
1, 0.2) (sample size calculations).

param_alternative_simulation 161

param_alternative_simulation

Parameter Description: Alternative for Simulation

Description

Parameter Description: Alternative for Simulation

Arguments

alternative The alternative hypothesis value for testing means under which the data is sim-
ulated. This can be a vector of assumed alternatives, default is seq(0, 1, 0.2).

param_beta Parameter Description: Beta

Description

Parameter Description: Beta

Arguments

beta Type II error rate, necessary for providing sample size calculations (e.g., getSampleSizeMeans()),
beta spending function designs, or optimum designs, default is 0.20. Must be a
positive numeric of length 1.

param_bindingFutility Parameter Description: Binding Futility

Description

Parameter Description: Binding Futility

Arguments

bindingFutility

Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in
the sense that the study must be stopped if the futility condition was reached
(default is FALSE).

162 param_conditionalPower

param_calcEventsFunction

Parameter Description: Calculate Events Function

Description

Parameter Description: Calculate Events Function

Arguments

calcEventsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power with specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

param_calcSubjectsFunction

Parameter Description: Calculate Subjects Function

Description

Parameter Description: Calculate Subjects Function

Arguments

calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power with specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

param_conditionalPower

Parameter Description: Conditional Power

Description

Parameter Description: Conditional Power

Arguments

conditionalPower

The conditional power for the subsequent stage under which the sample size
recalculation is performed. Must be a positive numeric of length 1.

param_conditionalPowerSimulation 163

param_conditionalPowerSimulation

Parameter Description: Conditional Power

Description

Parameter Description: Conditional Power

Arguments

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

param_dataInput Parameter Description: Data Input

Description

Parameter Description: Data Input

Arguments

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

param_design Parameter Description: Design

Description

Parameter Description: Design

Arguments

design The trial design.

164 param_dropoutRate1

param_design_with_default

Parameter Description: Design with Default

Description

Parameter Description: Design with Default

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

param_digits Parameter Description: Digits

Description

Parameter Description: Digits

Arguments

digits Defines how many digits are to be used for numeric values. Must be a positive
integer of length 1.

param_directionUpper Parameter Description: Direction Upper

Description

Parameter Description: Direction Upper

Arguments

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

param_dropoutRate1 Parameter Description: Dropout Rate (1)

Description

Parameter Description: Dropout Rate (1)

Arguments

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

param_dropoutRate2 165

param_dropoutRate2 Parameter Description: Dropout Rate (2)

Description

Parameter Description: Dropout Rate (2)

Arguments

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

param_dropoutTime Parameter Description: Dropout Time

Description

Parameter Description: Dropout Time

Arguments

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

param_effectList Parameter Description: Effect List

Description

Parameter Description: Effect List

Arguments

effectList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).

param_effectMatrix Parameter Description: Effect Matrix

Description

Parameter Description: Effect Matrix

Arguments

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

166 param_gED50

param_effectMeasure Parameter Description: Effect Measure

Description

Parameter Description: Effect Measure

Arguments

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

param_epsilonValue Parameter Description: Epsilon Value

Description

Parameter Description: Epsilon Value

Arguments

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

param_eventTime Parameter Description: Event Time

Description

Parameter Description: Event Time

Arguments

eventTime The assumed time under which the event rates are calculated, default is 12.

param_gED50 Parameter Description: G ED50

Description

Parameter Description: G ED50

Arguments

gED50 If typeOfShape = "sigmoidEmax" is selected, "gED50" has to be entered to
specify the ED50 of the sigmoid Emax model.

param_grid 167

param_grid Parameter Description: Grid (Output Specification Of Multiple Plots)

Description

Parameter Description: Grid (Output Specification Of Multiple Plots)

Arguments

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

param_groups Parameter Description: Number Of Treatment Groups

Description

Parameter Description: Number Of Treatment Groups

Arguments

groups The number of treatment groups (1 or 2), default is 2.

param_hazardRatio Parameter Description: Hazard Ratio

Description

Parameter Description: Hazard Ratio

Arguments

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

168 param_informationRates

param_includeAllParameters

Parameter Description: Include All Parameters

Description

Parameter Description: Include All Parameters

Arguments

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

param_informationEpsilon

Parameter Description: Information Epsilon

Description

Parameter Description: Information Epsilon

Arguments

informationEpsilon

Positive integer value specifying the absolute information epsilon, which de-
fines the maximum distance from the observed information to the maximum
information that causes the final analysis. Updates at the final analysis in case
the observed information at the final analysis is smaller ("under-running") than
the planned maximum information maxInformation, default is 0. Alternatively,
a floating-point number > 0 and < 1 can be specified to define a relative infor-
mation epsilon.

param_informationRates

Parameter Description: Information Rates

Description

Parameter Description: Information Rates

Arguments

informationRates

The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax.

param_intersectionTest_Enrichment 169

param_intersectionTest_Enrichment

Parameter Description: Intersection Test

Description

Parameter Description: Intersection Test

Arguments

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois",
"Bonferroni", "Simes", and "Sidak", default is "Simes".

param_intersectionTest_MultiArm

Parameter Description: Intersection Test

Description

Parameter Description: Intersection Test

Arguments

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett",
"Bonferroni", "Simes", "Sidak", and "Hierarchical", default is "Dunnett".

param_kappa Parameter Description: Kappa

Description

Parameter Description: Kappa

Arguments

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

170 param_lambda2

param_kMax Parameter Description: Maximum Number of Stages

Description

Parameter Description: Maximum Number of Stages

Arguments

kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 20 for group sequential or inverse
normal and 6 for Fisher combination test designs.

param_lambda1 Parameter Description: Lambda (1)

Description

Parameter Description: Lambda (1)

Arguments

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

param_lambda2 Parameter Description: Lambda (2)

Description

Parameter Description: Lambda (2)

Arguments

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

param_legendPosition 171

param_legendPosition Parameter Description: Legend Position On Plots

Description

Parameter Description: Legend Position On Plots

Arguments

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

param_maxInformation Parameter Description: Maximum Information

Description

Parameter Description: Maximum Information

Arguments

maxInformation Positive integer value specifying the maximum information.

param_maxNumberOfEventsPerStage

Parameter Description: Max Number Of Events Per Stage

Description

Parameter Description: Max Number Of Events Per Stage

Arguments

maxNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

172 param_maxNumberOfSubjectsPerStage

param_maxNumberOfIterations

Parameter Description: Maximum Number Of Iterations

Description

Parameter Description: Maximum Number Of Iterations

Arguments

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

param_maxNumberOfSubjects

Parameter Description: Maximum Number Of Subjects

Description

Parameter Description: Maximum Number Of Subjects

Arguments

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. For two treatment arms, it is
the maximum number of subjects for both treatment arms.

param_maxNumberOfSubjectsPerStage

Parameter Description: Maximum Number Of Subjects Per Stage

Description

Parameter Description: Maximum Number Of Subjects Per Stage

Arguments

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

param_maxNumberOfSubjects_survival 173

param_maxNumberOfSubjects_survival

Parameter Description: Maximum Number Of Subjects For Survival
Endpoint

Description

Parameter Description: Maximum Number Of Subjects For Survival Endpoint

Arguments

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. If accrual time and accrual
intensity are specified, this will be calculated. Must be a positive integer of
length 1.

param_median1 Parameter Description: Median (1)

Description

Parameter Description: Median (1)

Arguments

median1 The assumed median survival time in the treatment group, there is no default.

param_median2 Parameter Description: Median (2)

Description

Parameter Description: Median (2)

Arguments

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

174 param_niceColumnNamesEnabled

param_minNumberOfEventsPerStage

Parameter Description: Min Number Of Events Per Stage

Description

Parameter Description: Min Number Of Events Per Stage

Arguments

minNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

param_minNumberOfSubjectsPerStage

Parameter Description: Minimum Number Of Subjects Per Stage

Description

Parameter Description: Minimum Number Of Subjects Per Stage

Arguments

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs minNumberOfSubjectsPerStage refers
to the minimum number of subjects per selected active arm.

param_niceColumnNamesEnabled

Parameter Description: Nice Column Names Enabled

Description

Parameter Description: Nice Column Names Enabled

Arguments

niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

param_nMax 175

param_nMax Parameter Description: N_max

Description

Parameter Description: N_max

Arguments

nMax The maximum sample size. Must be a positive integer of length 1.

param_normalApproximation

Parameter Description: Normal Approximation

Description

Parameter Description: Normal Approximation

Arguments

normalApproximation

The type of computation of the p-values. Default is FALSE for testing means (i.e.,
the t test is used) and TRUE for testing rates and the hazard ratio. For testing rates,
if normalApproximation = FALSE is specified, the binomial test (one sample)
or the exact test of Fisher (two samples) is used for calculating the p-values. In
the survival setting normalApproximation = FALSE has no effect.

param_nPlanned Parameter Description: N Planned

Description

Parameter Description: N Planned

Arguments

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

176 param_pi2_rates

param_palette Parameter Description: Palette

Description

Parameter Description: Palette

Arguments

palette The palette, default is "Set1".

param_pi1_rates Parameter Description: Pi (1) for Rates

Description

Parameter Description: Pi (1) for Rates

Arguments

pi1 A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(0.2, 0.5, 0.1)
(power calculations and simulations) or seq(0.4, 0.6, 0.1) (sample size cal-
culations).

param_pi1_survival Parameter Description: Pi (1) for Survival Data

Description

Parameter Description: Pi (1) for Survival Data

Arguments

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

param_pi2_rates Parameter Description: Pi (2) for Rates

Description

Parameter Description: Pi (2) for Rates

Arguments

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

param_pi2_survival 177

param_pi2_survival Parameter Description: Pi (2) for Survival Data

Description

Parameter Description: Pi (2) for Survival Data

Arguments

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

param_piecewiseSurvivalTime

Parameter Description: Piecewise Survival Time

Description

Parameter Description: Piecewise Survival Time

Arguments

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

param_plannedEvents Parameter Description: Planned Events

Description

Parameter Description: Planned Events

Arguments

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

178 param_plotSettings

param_plannedSubjects Parameter Description: Planned Subjects

Description

Parameter Description: Planned Subjects

Arguments

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

param_plotPointsEnabled

Parameter Description: Plot Points Enabled

Description

Parameter Description: Plot Points Enabled

Arguments

plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

param_plotSettings Parameter Description: Plot Settings

Description

Parameter Description: Plot Settings

Arguments

plotSettings An object of class PlotSettings created by getPlotSetting()s.

param_populations 179

param_populations Parameter Description: Populations

Description

Parameter Description: Populations

Arguments

populations The number of populations in a two-sample comparison, default is 3.

param_rValue Parameter Description: R Value

Description

Parameter Description: R Value

Arguments

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

param_seed Parameter Description: Seed

Description

Parameter Description: Seed

Arguments

seed The seed to reproduce the simulation, default is a random seed.

param_selectArmsFunction

Parameter Description: Select Arms Function

Description

Parameter Description: Select Arms Function

Arguments

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment arms
are selected. This function is allowed to depend on effectVector with length
activeArms and stage (see examples).

180 param_showStatistics

param_selectPopulationsFunction

Parameter Description: Select Populations Function

Description

Parameter Description: Select Populations Function

Arguments

selectPopulationsFunction

Optionally, a function can be entered that defines the way of how populations
are selected. This function is allowed to depend on effectVector with length
populations and stage (see examples).

param_showSource Parameter Description: Show Source

Description

Parameter Description: Show Source

Arguments

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

param_showStatistics Parameter Description: Show Statistics

Description

Parameter Description: Show Statistics

Arguments

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

param_sided 181

param_sided Parameter Description: Sided

Description

Parameter Description: Sided

Arguments

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

param_slope Parameter Description: Slope

Description

Parameter Description: Slope

Arguments

slope If typeOfShape = "sigmoidEmax" is selected, "slope" can be entered to spec-
ify the slope of the sigmoid Emax model, default is 1.

param_stage Parameter Description: Stage

Description

Parameter Description: Stage

Arguments

stage The stage number (optional). Default: total number of existing stages in the data
input.

param_stageResults Parameter Description: Stage Results

Description

Parameter Description: Stage Results

Arguments

stageResults The results at given stage, obtained from getStageResults().

182 param_stDevSimulation

param_stDev Parameter Description: Standard Deviation

Description

Parameter Description: Standard Deviation

Arguments

stDev The standard deviation under which the sample size or power calculation is per-
formed, default is 1. If meanRatio = TRUE is specified, stDev defines the coeffi-
cient of variation sigma / mu2. Must be a positive numeric of length 1.

param_stDevH1 Parameter Description: Standard Deviation Under Alternative

Description

Parameter Description: Standard Deviation Under Alternative

Arguments

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev. Must be a positive numeric of length 1.

param_stDevSimulation Parameter Description: Standard Deviation for Simulation

Description

Parameter Description: Standard Deviation for Simulation

Arguments

stDev The standard deviation under which the data is simulated, default is 1. If meanRatio
= TRUE is specified, stDev defines the coefficient of variation sigma / mu2. Must
be a positive numeric of length 1.

param_stratifiedAnalysis 183

param_stratifiedAnalysis

Parameter Description: Stratified Analysis

Description

Parameter Description: Stratified Analysis

Arguments

stratifiedAnalysis

Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

param_successCriterion

Parameter Description: Success Criterion

Description

Parameter Description: Success Criterion

Arguments

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

param_theta Parameter Description: Theta

Description

Parameter Description: Theta

Arguments

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

184 param_three_dots

param_thetaH0 Parameter Description: Theta H0

Description

Parameter Description: Theta H0

Arguments

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

param_thetaH1 Parameter Description: Effect Under Alternative

Description

Parameter Description: Effect Under Alternative

Arguments

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

param_three_dots Parameter Description: "..."

Description

Parameter Description: "..."

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

param_three_dots_plot 185

param_three_dots_plot Parameter Description: "..." (optional plot arguments)

Description

Parameter Description: "..." (optional plot arguments)

Arguments

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

param_threshold Parameter Description: Threshold

Description

Parameter Description: Threshold

Arguments

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

param_tolerance Parameter Description: Tolerance

Description

Parameter Description: Tolerance

Arguments

tolerance The numerical tolerance, default is 1e-06. Must be a positive numeric of length
1.

186 param_typeOfSelection

param_typeOfComputation

Parameter Description: Type Of Computation

Description

Parameter Description: Type Of Computation

Arguments

typeOfComputation

Three options are available: "Schoenfeld", "Freedman", "HsiehFreedman",
the default is "Schoenfeld". For details, see Hsieh (Statistics in Medicine,
1992). For non-inferiority testing (i.e., thetaH0 != 1), only Schoenfeld’s for-
mula can be used.

param_typeOfDesign Parameter Description: Type of Design

Description

Parameter Description: Type of Design

Arguments

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Pampallona & Tsiatis
("PT"), Haybittle & Peto ("HP"), Optimum design within Wang & Tsiatis class
("WToptimum"), O’Brien & Fleming type alpha spending ("asOF"), Pocock type
alpha spending ("asP"), Kim & DeMets alpha spending ("asKD"), Hwang, Shi
& DeCani alpha spending ("asHSD"), user defined alpha spending ("asUser"),
no early efficacy stop ("noEarlyEfficacy"), default is "OF".

param_typeOfSelection Parameter Description: Type of Selection

Description

Parameter Description: Type of Selection

param_typeOfShape 187

Arguments

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

param_typeOfShape Parameter Description: Type Of Shape

Description

Parameter Description: Type Of Shape

Arguments

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined". If "sigmoidEmax"
is selected, "gED50" and "slope" has to be entered to specify the ED50 and
the slope of the sigmoid Emax model. For "linear" and "sigmoidEmax",
"muMaxVector" specifies the range of effect sizes for the treatment group with
highest response. If "userDefined" is selected, "effectMatrix" has to be
entered.

param_userAlphaSpending

Parameter Description: User Alpha Spending

Description

Parameter Description: User Alpha Spending

Arguments

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

188 plot.AnalysisResults

param_varianceOption Parameter Description: Variance Option

Description

Parameter Description: Variance Option

Arguments

varianceOption Defines the way to calculate the variance in multiple treatment arms (> 2) or pop-
ulation enrichment designs for testing means. For multiple arms, three options
are available: "overallPooled", "pairwisePooled", and "notPooled", de-
fault is "overallPooled". For enrichment designs, the options are: "pooled",
"pooledFromFull" (one subset only), and "notPooled", default is "pooled".

PiecewiseSurvivalTime Piecewise Exponential Survival Time

Description

Class for the definition of piecewise survival times.

Details

PiecewiseSurvivalTime is a class for the definition of piecewise survival times.

plot.AnalysisResults Analysis Results Plotting

Description

Plots the conditional power together with the likelihood function.

Usage

S3 method for class 'AnalysisResults'
plot(
x,
y,
...,
type = 1L,
nPlanned = NA_real_,
allocationRatioPlanned = NA_real_,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
legendTitle = NA_character_,
palette = "Set1",

plot.AnalysisResults 189

legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

Arguments

x The analysis results at given stage, obtained from getAnalysisResults().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. Furthermore the following arguments can be defined:

• thetaRange: A range of assumed effect sizes if testing means or a sur-
vival design was specified. Additionally, if testing means was selected,
assumedStDev (assumed standard deviation) can be specified (default is 1).

• piTreatmentRange: A range of assumed rates pi1 to calculate the condi-
tional power. Additionally, if a two-sample comparison was selected, pi2
can be specified (default is the value from getAnalysisResults()).

• directionUpper: Specifies the direction of the alternative, only applicable
for one-sided testing; default is TRUE which means that larger values of the
test statistics yield smaller p-values.

• thetaH0: The null hypothesis value, default is 0 for the normal and the
binary case, it is 1 for the survival case. For testing a rate in one sample, a
value thetaH0 in (0, 1) has to be specified for defining the null hypothesis
H0: pi = thetaH0.

type The plot type (default = 1). Note that at the moment only one type (the condi-
tional power plot) is available.

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

main The main title, default is "Dataset".

xlab The x-axis label, default is "Stage".

ylab The y-axis label.

legendTitle The legend title, default is "".

palette The palette, default is "Set1".

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position

190 plot.AnalysisResults

• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)
Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSetting()s.

Details

The conditional power is calculated only if effect size and sample size is specified.

Value

Returns a ggplot2 object.

Examples

design <- getDesignGroupSequential(kMax = 2)

dataExample <- getDataset(
n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)

result <- getAnalysisResults(design = design,
dataInput = dataExample, thetaH0 = 20,
nPlanned = c(30), thetaH1 = 1.5, stage = 1)

if (require(ggplot2)) plot(result, thetaRange = c(0, 100))

plot.Dataset 191

plot.Dataset Dataset Plotting

Description

Plots a dataset.

Usage

S3 method for class 'Dataset'
plot(
x,
y,
...,
main = "Dataset",
xlab = "Stage",
ylab = NA_character_,
legendTitle = "Group",
palette = "Set1",
showSource = FALSE,
plotSettings = NULL

)

Arguments

x The Dataset object to plot.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title, default is "Dataset".

xlab The x-axis label, default is "Stage".

ylab The y-axis label.

legendTitle The legend title, default is "Group".

palette The palette, default is "Set1".

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSetting()s.

192 plot.EventProbabilities

Details

Generic function to plot all kinds of datasets.

Value

Returns a ggplot2 object.

Examples

Plot a dataset of means
dataExample <- getDataset(

n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)

if (require(ggplot2)) plot(dataExample, main = "Comparison of Means")

Plot a dataset of rates
dataExample <- getDataset(

n1 = c(8, 10, 9, 11),
n2 = c(11, 13, 12, 13),
events1 = c(3, 5, 5, 6),
events2 = c(8, 10, 12, 12)

)

if (require(ggplot2)) plot(dataExample, main = "Comparison of Rates")

plot.EventProbabilities

Event Probabilities Plotting

Description

Plots an object that inherits from class EventProbabilities.

Usage

S3 method for class 'EventProbabilities'
plot(
x,
y,
...,
allocationRatioPlanned = x$allocationRatioPlanned,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,

plot.EventProbabilities 193

type = 1L,
legendTitle = NA_character_,
palette = "Set1",
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
plotSettings = NULL

)

Arguments

x The object that inherits from EventProbabilities.

y An optional object that inherits from NumberOfSubjects.

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). Note that at the moment only one type is available.

legendTitle The legend title, default is "".

palette The palette, default is "Set1".
plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)

194 plot.NumberOfSubjects

• "validate": all plot commands will be validated with eval(parse()) and
returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSetting()s.

Details

Generic function to plot an event probabilities object.

Generic function to plot a parameter set.

Value

Returns a ggplot2 object.

plot.NumberOfSubjects Number Of Subjects Plotting

Description

Plots an object that inherits from class NumberOfSubjects.

Usage

S3 method for class 'NumberOfSubjects'
plot(
x,
y,
...,
allocationRatioPlanned = NA_real_,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
legendTitle = NA_character_,
palette = "Set1",
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
plotSettings = NULL

)

Arguments

x The object that inherits from NumberOfSubjects.

y An optional object that inherits from EventProbabilities.

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. Will be ignored if y is undefined.

plot.NumberOfSubjects 195

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). Note that at the moment only one type is available.

legendTitle The legend title, default is "".

palette The palette, default is "Set1".

plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSetting()s.

Details

Generic function to plot an "number of subjects" object.

Generic function to plot a parameter set.

Value

Returns a ggplot2 object.

196 plot.ParameterSet

plot.ParameterSet Parameter Set Plotting

Description

Plots an object that inherits from class ParameterSet.

Usage

S3 method for class 'ParameterSet'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
palette = "Set1",
legendPosition = NA_integer_,
showSource = FALSE,
plotSettings = NULL

)

Arguments

x The object that inherits from ParameterSet.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1).

palette The palette, default is "Set1".

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center

plot.SimulationResults 197

• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSetting()s.

Details

Generic function to plot a parameter set.

Value

Returns a ggplot2 object.

plot.SimulationResults

Simulation Results Plotting

Description

Plots simulation results.

Usage

S3 method for class 'SimulationResults'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
palette = "Set1",
theta = seq(-1, 1, 0.01),
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

198 plot.SimulationResults

Arguments

x The simulation results, obtained from
getSimulationSurvival().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Overall Success’ plot (multi-arm and enrichment only)
• 2: creates a ’Success per Stage’ plot (multi-arm and enrichment only)
• 3: creates a ’Selected Arms per Stage’ plot (multi-arm and enrichment only)
• 4: creates a ’Reject per Stage’ or ’Rejected Arms per Stage’ plot
• 5: creates a ’Overall Power and Early Stopping’ plot
• 6: creates a ’Expected Number of Subjects and Power / Early Stop’ or

’Expected Number of Events and Power / Early Stop’ plot
• 7: creates an ’Overall Power’ plot
• 8: creates an ’Overall Early Stopping’ plot
• 9: creates an ’Expected Sample Size’ or ’Expected Number of Events’ plot
• 10: creates a ’Study Duration’ plot (non-multi-arm and non-enrichment

survival only)
• 11: creates an ’Expected Number of Subjects’ plot (non-multi-arm and non-

enrichment survival only)
• 12: creates an ’Analysis Times’ plot (non-multi-arm and non-enrichment

survival only)
• 13: creates a ’Cumulative Distribution Function’ plot (non-multi-arm and

non-enrichment survival only)
• 14: creates a ’Survival Function’ plot (non-multi-arm and non-enrichment

survival only)
• "all": creates all available plots and returns it as a grid plot or list

palette The palette, default is "Set1".

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom

plot.StageResults 199

• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSetting()s.

Details

Generic function to plot all kinds of simulation results.

Value

Returns a ggplot2 object.

Examples

results <- getSimulationMeans(alternative = 0:4, stDev = 5,
plannedSubjects = 40, maxNumberOfIterations = 1000)

plot(results, type = 5)

plot.StageResults Stage Results Plotting

Description

Plots the conditional power together with the likelihood function.

200 plot.StageResults

Usage

S3 method for class 'StageResults'
plot(
x,
y,
...,
type = 1L,
nPlanned,
allocationRatioPlanned = 1,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
legendTitle = NA_character_,
palette = "Set1",
legendPosition = NA_integer_,
showSource = FALSE,
plotSettings = NULL

)

Arguments

x The stage results at given stage, obtained from getStageResults() or getAnalysisResults().
y Not available for this kind of plot (is only defined to be compatible to the generic

plot function).
... Optional plot arguments. Furthermore the following arguments can be defined:

• thetaRange: A range of assumed effect sizes if testing means or a sur-
vival design was specified. Additionally, if testing means was selected, an
assumed standard deviation can be specified (default is 1).

• piTreatmentRange: A range of assumed rates pi1 to calculate the condi-
tional power. Additionally, if a two-sample comparison was selected, pi2
can be specified (default is the value from getAnalysisResults()).

• directionUpper: Specifies the direction of the alternative, only applicable
for one-sided testing; default is TRUE which means that larger values of the
test statistics yield smaller p-values.

• thetaH0: The null hypothesis value, default is 0 for the normal and the
binary case, it is 1 for the survival case. For testing a rate in one sample,
a value thetaH0 in (0,1) has to be specified for defining the null hypothesis
H0: pi = thetaH0.

type The plot type (default = 1). Note that at the moment only one type (the condi-
tional power plot) is available.

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

plot.StageResults 201

main The main title.

xlab The x-axis label.

ylab The y-axis label.

legendTitle The legend title.

palette The palette, default is "Set1".

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSetting()s.

Details

Generic function to plot all kinds of stage results. The conditional power is calculated only if effect
size and sample size is specified.

Value

Returns a ggplot2 object.

Examples

design <- getDesignGroupSequential(
kMax = 4, alpha = 0.025,
informationRates = c(0.2, 0.5, 0.8, 1),
typeOfDesign = "WT", deltaWT = 0.25

)

dataExample <- getDataset(
n = c(20, 30, 30),

202 plot.TrialDesign

means = c(50, 51, 55),
stDevs = c(130, 140, 120)

)

stageResults <- getStageResults(design, dataExample, thetaH0 = 20)

if (require(ggplot2)) plot(stageResults, nPlanned = c(30), thetaRange = c(0, 100))

plot.SummaryFactory Summary Factory Plotting

Description

Plots a summary factory.

Usage

S3 method for class 'SummaryFactory'
plot(x, y, ...)

Arguments

x The summary factory object.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

Details

Generic function to plot all kinds of summary factories.

Value

Returns a ggplot2 object.

plot.TrialDesign Trial Design Plotting

Description

Plots a trial design.

plot.TrialDesign 203

Usage

S3 method for class 'TrialDesign'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
palette = "Set1",
theta = seq(-1, 1, 0.01),
nMax = NA_integer_,
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

Arguments

x The trial design, obtained from
getDesignGroupSequential(),
getDesignInverseNormal() or
getDesignFisher().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 3: creates a ’Stage Levels’ plot
• 4: creates a ’Error Spending’ plot
• 5: creates a ’Power and Early Stopping’ plot
• 6: creates an ’Average Sample Size and Power / Early Stop’ plot
• 7: creates an ’Power’ plot
• 8: creates an ’Early Stopping’ plot
• 9: creates an ’Average Sample Size’ plot
• "all": creates all available plots and returns it as a grid plot or list

palette The palette, default is "Set1".

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

nMax The maximum sample size. Must be a positive integer of length 1.

204 plot.TrialDesign

plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSetting()s.

Details

Generic function to plot a trial design.

Generic function to plot a trial design.

Note that nMax is not an argument that it passed to ggplot2. Rather, the underlying calculations (e.g.
power for different theta’s or average sample size) are based on calls to function getPowerAndAverageSampleNumber()
which has argument nMax. I.e., nMax is not an argument to ggplot2 but to getPowerAndAverageSampleNumber()
which is called prior to plotting.

Value

Returns a ggplot2 object.

See Also

plot() to compare different designs or design parameters visual.

plot.TrialDesignPlan 205

Examples

design <- getDesignInverseNormal(
kMax = 3, alpha = 0.025,
typeOfDesign = "asKD", gammaA = 2,
informationRates = c(0.2, 0.7, 1),
typeBetaSpending = "bsOF"

)
if (require(ggplot2)) {

plot(design) # default: type = 1
}

plot.TrialDesignPlan Trial Design Plan Plotting

Description

Plots a trial design plan.

Usage

S3 method for class 'TrialDesignPlan'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = ifelse(x$.design$kMax == 1, 5L, 1L),
palette = "Set1",
theta = seq(-1, 1, 0.01),
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

Arguments

x The trial design plan, obtained from
getSampleSizeMeans(),
getSampleSizeRates(),
getSampleSizeSurvival(),
getPowerMeans(),
getPowerRates() or
getPowerSurvival().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

206 plot.TrialDesignPlan

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 2: creates a ’Boundaries Effect Scale’ plot
• 3: creates a ’Boundaries p Values Scale’ plot
• 4: creates a ’Error Spending’ plot
• 5: creates a ’Sample Size’ or ’Overall Power and Early Stopping’ plot
• 6: creates a ’Number of Events’ or ’Sample Size’ plot
• 7: creates an ’Overall Power’ plot
• 8: creates an ’Overall Early Stopping’ plot
• 9: creates an ’Expected Number of Events’ or ’Expected Sample Size’ plot
• 10: creates a ’Study Duration’ plot
• 11: creates an ’Expected Number of Subjects’ plot
• 12: creates an ’Analysis Times’ plot
• 13: creates a ’Cumulative Distribution Function’ plot
• 14: creates a ’Survival Function’ plot
• "all": creates all available plots and returns it as a grid plot or list

palette The palette, default is "Set1".

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)

plot.TrialDesignSet 207

• "validate": all plot commands will be validated with eval(parse()) and
returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.
grid An integer value specifying the output of multiple plots. By default (1) a list

of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSetting()s.

Details

Generic function to plot all kinds of trial design plans.

Value

Returns a ggplot2 object.

Examples

if (require(ggplot2)) plot(getSampleSizeMeans())

plot.TrialDesignSet Trial Design Set Plotting

Description

Plots a trial design set.

Usage

S3 method for class 'TrialDesignSet'
plot(
x,
y,
...,
type = 1L,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
palette = "Set1",
theta = seq(-1, 1, 0.02),
nMax = NA_integer_,
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

208 plot.TrialDesignSet

Arguments

x The trial design set, obtained from getDesignSet().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 3: creates a ’Stage Levels’ plot
• 4: creates a ’Error Spending’ plot
• 5: creates a ’Power and Early Stopping’ plot
• 6: creates an ’Average Sample Size and Power / Early Stop’ plot
• 7: creates an ’Power’ plot
• 8: creates an ’Early Stopping’ plot
• 9: creates an ’Average Sample Size’ plot
• "all": creates all available plots and returns it as a grid plot or list

main The main title.

xlab The x-axis label.

ylab The y-axis label.

palette The palette, default is "Set1".

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

nMax The maximum sample size. Must be a positive integer of length 1.
plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)

PlotSettings 209

• "validate": all plot commands will be validated with eval(parse()) and
returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSetting()s.

Details

Generic function to plot a trial design set. Is, e.g., useful to compare different designs or design
parameters visual.

Value

Returns a ggplot2 object.

Examples

design <- getDesignInverseNormal(
kMax = 3, alpha = 0.025,
typeOfDesign = "asKD", gammaA = 2,
informationRates = c(0.2, 0.7, 1), typeBetaSpending = "bsOF"

)

Create a set of designs based on the master design defined above
and varied parameter 'gammaA'
designSet <- getDesignSet(design = design, gammaA = 4)

if (require(ggplot2)) plot(designSet, type = 1, legendPosition = 6)

PlotSettings Plot Settings

Description

Class for plot settings.

Details

Collects typical plot settings in an object.

210 plotTypes

Fields

lineSize The line size.

pointSize The point size.

pointColor The point color, e.g., "red" or "blue".

mainTitleFontSize The main tile font size.

axesTextFontSize The text font size.

legendFontSize The legend font size.

scalingFactor The scaling factor.

Methods

adjustLegendFontSize(adjustingValue) Adjusts the legend font size, e.g., run
adjustLegendFontSize(-2) # makes the font size 2 points smaller

enlargeAxisTicks(p) Enlarges the axis ticks

expandAxesRange(p, x = NA_real_, y = NA_real_) Expands the axes range

hideGridLines(p) Hides the grid lines

setAxesAppearance(p) Sets the font size and face of the axes titles and texts

setColorPalette(p, palette, mode = c("colour", "fill", "all")) Sets the color palette

setLegendBorder(p) Sets the legend border

setMainTitle(p, mainTitle, subtitle = NA_character_) Sets the main title

setMarginAroundPlot(p, margin = 0.2) Sets the margin around the plot, e.g., run
setMarginAroundPlot(p, .2) or
setMarginAroundPlot(p, c(.1, .2, .1, .2)

setTheme(p) Sets the theme

plotTypes Get Available Plot Types

Description

Function to identify the available plot types of an object.

Usage

plotTypes(
obj,
output = c("numeric", "caption", "numcap", "capnum"),
numberInCaptionEnabled = FALSE

)

getAvailablePlotTypes(
obj,
output = c("numeric", "caption", "numcap", "capnum"),
numberInCaptionEnabled = FALSE

)

PowerAndAverageSampleNumberResult 211

Arguments

obj The object for which the plot types shall be identified, e.g. produced by getDesignGroupSequential()
or getSampleSizeMeans().

output The output type. Can be one of c("numeric", "caption", "numcap", "capnum").
numberInCaptionEnabled

If TRUE, the number will be added to the caption, default is FALSE.

Details

plotTypes and getAvailablePlotTypes() are equivalent, i.e., plotTypes is a short form of
getAvailablePlotTypes().

output:

1. numeric: numeric output

2. caption: caption as character output

3. numcap: list with number and caption

4. capnum: list with caption and number

Value

Depending on how the output is specified, a numeric vector, a character vector, or a list will be
returned.

Examples

design <- getDesignInverseNormal(kMax = 2)
getAvailablePlotTypes(design, "numeric")
plotTypes(design, "caption")
getAvailablePlotTypes(design, "numcap")
plotTypes(design, "capnum")

PowerAndAverageSampleNumberResult

Power and Average Sample Number Result

Description

Class for power and average sample number (ASN) results.

Details

This object cannot be created directly; use getPowerAndAverageSampleNumber() with suitable
arguments to create it.

Fields

nMax The maximum sample size. Is a positive integer of length 1.

theta A vector of standardized effect sizes (theta values), default is a sequence from -1 to 1.

212 print.FieldSet

print.Dataset Print Dataset Values

Description

print prints its Dataset argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'Dataset'
print(
x,
...,
markdown = FALSE,
output = c("list", "long", "wide", "r", "rComplete")

)

Arguments

x A Dataset object.
... Ensures that all arguments (starting from the "...") are to be named and that a

warning will be displayed if unknown arguments are passed.
markdown If TRUE, the output will be created in Markdown.
output A character defining the output type, default is "list".

Details

Prints the dataset.

print.FieldSet Print Field Set Values

Description

print prints its FieldSet argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'FieldSet'
print(x, ...)

Arguments

x A FieldSet object.
... Ensures that all arguments (starting from the "...") are to be named and that a

warning will be displayed if unknown arguments are passed.

Details

Prints the field set.

print.ParameterSet 213

print.ParameterSet Print Parameter Set Values

Description

print prints its ParameterSet argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'ParameterSet'
print(x, ..., markdown = FALSE)

Arguments

x The ParameterSet object to print.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

markdown If TRUE, the object x will be printed using markdown syntax; normal representa-
tion will be used otherwise (default is FALSE)

Details

Prints the parameters and results of a parameter set.

print.SimulationResults

Print Simulation Results

Description

print prints its SimulationResults argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'SimulationResults'
print(x, ..., showStatistics = FALSE, markdown = FALSE)

Arguments

x The SimulationResults object to print.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

markdown If TRUE, the object x will be printed using markdown syntax; normal representa-
tion will be used otherwise (default is FALSE)

Details

Prints the parameters and results of an SimulationResults object.

214 rawDataTwoArmNormal

printCitation Print Citation

Description

How to cite rpact and R in publications.

Usage

printCitation(inclusiveR = TRUE)

Arguments

inclusiveR If TRUE (default) the information on how to cite the base R system in publications
will be added.

Details

This function shows how to cite rpact and R (inclusiveR = TRUE) in publications.

Examples

printCitation()

rawDataTwoArmNormal Raw Dataset Of A Two Arm Continuous Outcome With Covariates

Description

An artificial dataset that was randomly generated with simulated normal data. The data set has six
variables:

1. Subject id 2. Stage number 3. Group name 4. An example outcome in that we are interested in
5. The first covariate *gender* 6. The second covariate *covariate*

Usage

rawDataTwoArmNormal

Format

A data.frame object.

Details

See the vignette "Two-arm analysis for continuous data with covariates from raw data" to learn how
to

* import raw data from a csv file, * calculate estimated adjusted (marginal) means (EMMs, least-
squares means) for a linear model, and * perform two-arm interim analyses with these data.

You can use rawDataTwoArmNormal to reproduce the examples in the vignette.

rcmd 215

rcmd Get Object R Code

Description

Returns the R source command of a result object.

Usage

rcmd(
obj,
...,
leadingArguments = NULL,
includeDefaultParameters = FALSE,
stringWrapParagraphWidth = 90,
prefix = "",
postfix = "",
stringWrapPrefix = "",
newArgumentValues = list()

)

getObjectRCode(
obj,
...,
leadingArguments = NULL,
includeDefaultParameters = FALSE,
stringWrapParagraphWidth = 90,
prefix = "",
postfix = "",
stringWrapPrefix = "",
newArgumentValues = list(),
tolerance = 1e-07

)

Arguments

obj The result object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

leadingArguments

A character vector with arguments that shall be inserted at the beginning of the
function command, e.g., design = x. Be careful with this option because the
created R command may no longer be valid if used.

includeDefaultParameters

If TRUE, default parameters will be included in all rpact commands; default is
FALSE.

stringWrapParagraphWidth

An integer value defining the number of characters after which a line break shall
be inserted; set to NULL to insert no line breaks.

prefix A character string that shall be added to the beginning of the R command.

216 readDataset

postfix A character string that shall be added to the end of the R command.
stringWrapPrefix

A prefix character string that shall be added to each new line, typically some
spaces.

newArgumentValues

A named list with arguments that shall be renewed in the R command, e.g.,
newArgumentValues = list(informationRates = c(0.5, 1)).

tolerance The tolerance for defining a value as default.

Details

getObjectRCode() (short: rcmd()) recreates the R commands that result in the specified object
obj. obj must be an instance of class ParameterSet.

Value

A character value or vector will be returned.

readDataset Read Dataset

Description

Reads a data file and returns it as dataset object.

Usage

readDataset(
file,
...,
header = TRUE,
sep = ",",
quote = "\"",
dec = ".",
fill = TRUE,
comment.char = "",
fileEncoding = "UTF-8"

)

Arguments

file A CSV file (see read.table).

... Further arguments to be passed to coderead.table.

header A logical value indicating whether the file contains the names of the variables
as its first line.

sep The field separator character. Values on each line of the file are separated by this
character. If sep = "," (the default for readDataset) the separator is a comma.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

readDataset 217

dec The character used in the file for decimal points.

fill logical. If TRUE then in case the rows have unequal length, blank fields are
implicitly added.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

fileEncoding character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

readDataset is a wrapper function that uses read.table to read the CSV file into a data frame,
transfers it from long to wide format with reshape and puts the data to getDataset().

Value

Returns a Dataset object. The following generics (R generic functions) are available for this result
object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

See Also

• readDatasets() for reading multiple datasets,

• writeDataset() for writing a single dataset,

• writeDatasets() for writing multiple datasets.

Examples

dataFileRates <- system.file("extdata",
"dataset_rates.csv",
package = "rpact"

)
if (dataFileRates != "") {

datasetRates <- readDataset(dataFileRates)
datasetRates

}

dataFileMeansMultiArm <- system.file("extdata",
"dataset_means_multi-arm.csv",
package = "rpact"

)
if (dataFileMeansMultiArm != "") {

datasetMeansMultiArm <- readDataset(dataFileMeansMultiArm)
datasetMeansMultiArm

}

218 readDatasets

dataFileRatesMultiArm <- system.file("extdata",
"dataset_rates_multi-arm.csv",
package = "rpact"

)
if (dataFileRatesMultiArm != "") {

datasetRatesMultiArm <- readDataset(dataFileRatesMultiArm)
datasetRatesMultiArm

}

dataFileSurvivalMultiArm <- system.file("extdata",
"dataset_survival_multi-arm.csv",
package = "rpact"

)
if (dataFileSurvivalMultiArm != "") {

datasetSurvivalMultiArm <- readDataset(dataFileSurvivalMultiArm)
datasetSurvivalMultiArm

}

readDatasets Read Multiple Datasets

Description

Reads a data file and returns it as a list of dataset objects.

Usage

readDatasets(
file,
...,
header = TRUE,
sep = ",",
quote = "\"",
dec = ".",
fill = TRUE,
comment.char = "",
fileEncoding = "UTF-8"

)

Arguments

file A CSV file (see read.table).
... Further arguments to be passed to read.table.
header A logical value indicating whether the file contains the names of the variables

as its first line.
sep The field separator character. Values on each line of the file are separated by this

character. If sep = "," (the default for readDatasets) the separator is a comma.
quote The set of quoting characters. To disable quoting altogether, use quote = "". See

scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

resetLogLevel 219

dec The character used in the file for decimal points.

fill logical. If TRUE then in case the rows have unequal length, blank fields are
implicitly added.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

fileEncoding character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

Reads a file that was written by writeDatasets() before.

Value

Returns a list of Dataset objects.

See Also

• readDataset() for reading a single dataset,

• writeDatasets() for writing multiple datasets,

• writeDataset() for writing a single dataset.

Examples

dataFile <- system.file("extdata", "datasets_rates.csv", package = "rpact")
if (dataFile != "") {

datasets <- readDatasets(dataFile)
datasets

}

resetLogLevel Reset Log Level

Description

Resets the rpact log level.

Usage

resetLogLevel()

Details

This function resets the log level of the rpact internal log message system to the default value
"PROGRESS".

See Also

• getLogLevel() for getting the current log level,

• setLogLevel() for setting the log level.

220 rpact

Examples

Not run:
reset log level to default value
resetLogLevel()

End(Not run)

rpact rpact - Confirmatory Adaptive Clinical Trial Design and Analysis

Description

rpact (R Package for Adaptive Clinical Trials) is a comprehensive package that enables the design,
simulation, and analysis of confirmatory adaptive group sequential designs. Particularly, the meth-
ods described in the recent monograph by Wassmer and Brannath (published by Springer, 2016)
are implemented. It also comprises advanced methods for sample size calculations for fixed sam-
ple size designs incl., e.g., sample size calculation for survival trials with piecewise exponentially
distributed survival times and staggered patients entry.

Details

rpact includes the classical group sequential designs (incl. user spending function approaches)
where the sample sizes per stage (or the time points of interim analysis) cannot be changed in a
data-driven way. Confirmatory adaptive designs explicitly allow for this under control of the Type I
error rate. They are either based on the combination testing or the conditional rejection probability
(CRP) principle. Both are available, for the former the inverse normal combination test and Fisher’s
combination test can be used.

Specific techniques of the adaptive methodology are also available, e.g., overall confidence in-
tervals, overall p-values, and conditional and predictive power assessments. Simulations can be
performed to assess the design characteristics of a (user-defined) sample size recalculation strategy.
Designs are available for trials with continuous, binary, and survival endpoint.

For more information please visit www.rpact.org. If you are interested in professional services
round about the package or need a comprehensive validation documentation to fulfill regulatory
requirements please visit www.rpact.com.

rpact is developed by

• Gernot Wassmer (<gernot.wassmer@rpact.com>) and

• Friedrich Pahlke (<friedrich.pahlke@rpact.com>).

Author(s)

Gernot Wassmer, Friedrich Pahlke

References

Wassmer, G., Brannath, W. (2016) Group Sequential and Confirmatory Adaptive Designs in Clinical
Trials (Springer Series in Pharmaceutical Statistics; doi:10.1007/9783319325620)

https://www.rpact.org
https://www.rpact.com
https://doi.org/10.1007/978-3-319-32562-0

setLogLevel 221

See Also

Useful links:

• https://www.rpact.org

• https://www.rpact.com

• https://github.com/rpact-com/rpact

• Report bugs at https://github.com/rpact-com/rpact/issues

setLogLevel Set Log Level

Description

Sets the rpact log level.

Usage

setLogLevel(
logLevel = c("PROGRESS", "ERROR", "WARN", "INFO", "DEBUG", "TRACE", "DISABLED")

)

Arguments

logLevel The new log level to set. Can be one of "PROGRESS", "ERROR", "WARN",
"INFO", "DEBUG", "TRACE", "DISABLED". Default is "PROGRESS".

Details

This function sets the log level of the rpact internal log message system. By default only calcula-
tion progress messages will be shown on the output console, particularly getAnalysisResults()
shows this kind of messages. The output of these messages can be disabled by setting the log level
to "DISABLED".

See Also

• getLogLevel() for getting the current log level,

• resetLogLevel() for resetting the log level to default.

Examples

Not run:
show debug messages
setLogLevel("DEBUG")

disable all log messages
setLogLevel("DISABLED")

End(Not run)

https://www.rpact.org
https://www.rpact.com
https://github.com/rpact-com/rpact
https://github.com/rpact-com/rpact/issues

222 setOutputFormat

setOutputFormat Set Output Format

Description

With this function the format of the standard outputs of all rpact objects can be changed and set
user defined respectively.

Usage

setOutputFormat(
parameterName = NA_character_,
...,
digits = NA_integer_,
nsmall = NA_integer_,
trimSingleZeros = NA,
futilityProbabilityEnabled = NA,
file = NA_character_,
resetToDefault = FALSE,
roundFunction = NA_character_

)

Arguments

parameterName The name of the parameter whose output format shall be edited. Leave the
default NA_character_ if the output format of all parameters shall be edited.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

digits How many significant digits are to be used for a numeric value. The default,
NULL, uses getOption("digits"). Allowed values are 0 <= digits <= 20.

nsmall The minimum number of digits to the right of the decimal point in formatting
real numbers in non-scientific formats. Allowed values are 0 <= nsmall <= 20.

trimSingleZeros

If TRUE zero values will be trimmed in the output, e.g., "0.00" will displayed as
"0"

futilityProbabilityEnabled

If TRUE very small value (< 1e-09) will be displayed as "0", default is FALSE.

file An optional file name of an existing text file that contains output format defini-
tions (see Details for more information).

resetToDefault If TRUE all output formats will be reset to default value. Note that other settings
will be executed afterwards if specified, default is FALSE.

roundFunction A character value that specifies the R base round function to use, default is
NA_character_. Allowed values are "ceiling", "floor", "trunc", "round", "sig-
nif", and NA_character_.

SimulationResults 223

Details

Output formats can be written to a text file (see getOutputFormat()). To load your personal
output formats read a formerly saved file at the beginning of your work with rpact, e.g. execute
setOutputFormat(file = "my_rpact_output_formats.txt").

Note that the parameterName must not match exactly, e.g., for p-values the following parameter
names will be recognized amongst others:

1. p value

2. p.values

3. p-value

4. pValue

5. rpact.output.format.p.value

See Also

format for details on the function used internally to format the values.

Other output formats: getOutputFormat()

Examples

show output format of p values
getOutputFormat("p.value")

set new p value output format
setOutputFormat("p.value", digits = 5, nsmall = 5)

show sample sizes as smallest integers not less than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "ceiling")
getSampleSizeMeans()

show sample sizes as smallest integers not greater than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "floor")
getSampleSizeMeans()

set new sample size output format without round function
setOutputFormat("sample size", digits = 2, nsmall = 2)
getSampleSizeMeans()

reset sample size output format to default
setOutputFormat("sample size")
getSampleSizeMeans()
getOutputFormat("sample size")

SimulationResults Class for Simulation Results

Description

A class for simulation results.

224 SimulationResultsEnrichmentRates

Details

SimulationResults is the basic class for

• SimulationResultsMeans,

• SimulationResultsRates,

• SimulationResultsSurvival,

• SimulationResultsMultiArmMeans,

• SimulationResultsMultiArmRates, and

• SimulationResultsMultiArmSurvival.

Fields

seed The seed used for random number generation. Is a numeric vector of length 1.

iterations The number of iterations used for simulations. Is an integer of length 1.

SimulationResultsEnrichmentMeans

Class for Simulation Results Enrichment Means

Description

A class for simulation results means in enrichment designs.

Details

Use getSimulationEnrichmentMeans() to create an object of this type.

SimulationResultsEnrichmentRates

Class for Simulation Results Enrichment Rates

Description

A class for simulation results rates in enrichment designs.

Details

Use getSimulationEnrichmentRates() to create an object of this type.

SimulationResultsEnrichmentSurvival 225

SimulationResultsEnrichmentSurvival

Class for Simulation Results Enrichment Survival

Description

A class for simulation results survival in enrichment designs.

Details

Use getSimulationEnrichmentSurvival() to create an object of this type.

SimulationResultsMeans

Class for Simulation Results Means

Description

A class for simulation results means.

Details

Use getSimulationMeans() to create an object of this type.

Fields

groups The number of groups. Is an integer vector of length 1.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing, default is TRUE which means that larger values of the test statistics yield smaller
p-values.

normalApproximation Logical. Describes if a normal approximation was used when calculating
p-values. Default for means is FALSE and TRUE for rates and hazard ratio.

SimulationResultsMultiArmMeans

Class for Simulation Results Multi-Arm Means

Description

A class for simulation results means in multi-arm designs.

Details

Use getSimulationMultiArmMeans() to create an object of this type.

226 SimulationResultsRates

SimulationResultsMultiArmRates

Class for Simulation Results Multi-Arm Rates

Description

A class for simulation results rates in multi-arm designs.

Details

Use getSimulationMultiArmRates() to create an object of this type.

SimulationResultsMultiArmSurvival

Class for Simulation Results Multi-Arm Survival

Description

A class for simulation results survival in multi-arm designs.

Details

Use getSimulationMultiArmSurvival() to create an object of this type.

SimulationResultsRates

Class for Simulation Results Rates

Description

A class for simulation results rates.

Details

Use getSimulationRates() to create an object of this type.

Fields

groups The number of groups. Is an integer vector of length 1.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing, default is TRUE which means that larger values of the test statistics yield smaller
p-values.

normalApproximation Logical. Describes if a normal approximation was used when calculating
p-values. Default for means is FALSE and TRUE for rates and hazard ratio.

SimulationResultsSurvival 227

SimulationResultsSurvival

Class for Simulation Results Survival

Description

A class for simulation results survival.

Details

Use getSimulationSurvival() to create an object of this type.

StageResults Basic Stage Results

Description

Basic class for stage results.

Details

StageResults is the basic class for StageResultsMeans, StageResultsRates, and StageResultsSurvival.

Fields

stages The stage numbers of the trial. Is an integer vector of length kMax.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax.

combInverseNormal The stage-wise test statistics for the inverse normal test. Is a numeric vector
of length kMax.

combFisher Test statistic for Fisher’s combination test. H~0~

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The action drawn from test result.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsFisher The weights for inverse normal statistic.. Is a numeric vector of length kMax.

228 StageResultsRates

StageResultsMeans Stage Results of Means

Description

Class for stage results of means.

Details

This object cannot be created directly; use getStageResults() with suitable arguments to create
the stage results of a dataset of means.

Fields

stages The stage numbers of the trial. Is an integer vector of length kMax.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

overallTestStatistics The overall i.e. cumulated test statistics. Is a numeric vector of length
kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax.

overallPValues The overall i.e. cumulated p-values. Is a numeric vector of length kMax.

combInverseNormal The stage-wise test statistics for the inverse normal test. Is a numeric vector
of length kMax.

combFisher Test statistic for Fisher’s combination test. H~0~

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The action drawn from test result.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsFisher The weights for inverse normal statistic.. Is a numeric vector of length kMax.

normalApproximation Logical. Describes if a normal approximation was used when calculating
p-values. Default for means is FALSE and TRUE for rates and hazard ratio.

equalVariances Logical. Describes if variances are assumed equal between groups. Specified via
equalVariances in getStageResults(), default is TRUE.

StageResultsRates Stage Results of Rates

Description

Class for stage results of rates.

Details

This object cannot be created directly; use getStageResults() with suitable arguments to create
the stage results of a dataset of rates.

StageResultsSurvival 229

Fields

stages The stage numbers of the trial. Is an integer vector of length kMax.
testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.
overallTestStatistics The overall i.e. cumulated test statistics. Is a numeric vector of length

kMax.
pValues The stage-wise p-values. Is a numeric vector of length kMax.
overallPValues The overall i.e. cumulated p-values. Is a numeric vector of length kMax.
combInverseNormal The stage-wise test statistics for the inverse normal test. Is a numeric vector

of length kMax.
combFisher Test statistic for Fisher’s combination test. H~0~
effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.
testActions The action drawn from test result.
weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.
weightsFisher The weights for inverse normal statistic.. Is a numeric vector of length kMax.
normalApproximation Logical. Describes if a normal approximation was used when calculating

p-values. Default for means is FALSE and TRUE for rates and hazard ratio.

StageResultsSurvival Stage Results of Survival Data

Description

Class for stage results survival data.

Details

This object cannot be created directly; use getStageResults() with suitable arguments to create
the stage results of a dataset of survival data.

Fields

stages The stage numbers of the trial. Is an integer vector of length kMax.
testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.
overallTestStatistics The overall i.e. cumulated test statistics. Is a numeric vector of length

kMax.
pValues The stage-wise p-values. Is a numeric vector of length kMax.
overallPValues The overall i.e. cumulated p-values. Is a numeric vector of length kMax.
combInverseNormal The stage-wise test statistics for the inverse normal test. Is a numeric vector

of length kMax.
combFisher Test statistic for Fisher’s combination test. H~0~
effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.
testActions The action drawn from test result.
weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.
weightsFisher The weights for inverse normal statistic.. Is a numeric vector of length kMax.
normalApproximation Logical. Describes if a normal approximation was used when calculating

p-values. Default for means is FALSE and TRUE for rates and hazard ratio.

230 summary.AnalysisResults

summary.AnalysisResults

Analysis Results Summary

Description

Displays a summary of AnalysisResults object.

Usage

S3 method for class 'AnalysisResults'
summary(object, ..., type = 1, digits = NA_integer_)

Arguments

object An AnalysisResults object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

digits Defines how many digits are to be used for numeric values. Must be a positive
integer of length 1.

Details

Summarizes the parameters and results of an analysis results object.

Value

Returns a SummaryFactory object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object

Summary options

The following options can be set globally:

1. rpact.summary.output.size: one of c("small", "medium", "large"); defines how many
details will be included into the summary; default is "large", i.e., all available details are
displayed.

2. rpact.summary.justify: one of c("right", "left", "centre"); shall the values be right-
justified (the default), left-justified or centered.

3. rpact.summary.width: defines the maximum number of characters to be used per line (de-
fault is 83).

4. rpact.summary.intervalFormat: defines how intervals will be displayed in the summary,
default is "[%s; %s]".

5. rpact.summary.digits: defines how many digits are to be used for numeric values (default
is 3).

6. rpact.summary.digits.probs: defines how many digits are to be used for numeric values
(default is one more than value of rpact.summary.digits, i.e., 4).

summary.Dataset 231

7. rpact.summary.trim.zeroes: if TRUE (default) zeroes will always displayed as "0", e.g.
"0.000" will become "0".

Example: options("rpact.summary.intervalFormat" = "%s - %s")

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

summary.Dataset Dataset Summary

Description

Displays a summary of Dataset object.

Usage

S3 method for class 'Dataset'
summary(object, ..., type = 1, digits = NA_integer_)

Arguments

object A Dataset object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

digits Defines how many digits are to be used for numeric values. Must be a positive
integer of length 1.

Details

Summarizes the parameters and results of a dataset.

Value

Returns a SummaryFactory object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object

232 summary.ParameterSet

Summary options

The following options can be set globally:

1. rpact.summary.output.size: one of c("small", "medium", "large"); defines how many
details will be included into the summary; default is "large", i.e., all available details are
displayed.

2. rpact.summary.justify: one of c("right", "left", "centre"); shall the values be right-
justified (the default), left-justified or centered.

3. rpact.summary.width: defines the maximum number of characters to be used per line (de-
fault is 83).

4. rpact.summary.intervalFormat: defines how intervals will be displayed in the summary,
default is "[%s; %s]".

5. rpact.summary.digits: defines how many digits are to be used for numeric values (default
is 3).

6. rpact.summary.digits.probs: defines how many digits are to be used for numeric values
(default is one more than value of rpact.summary.digits, i.e., 4).

7. rpact.summary.trim.zeroes: if TRUE (default) zeroes will always displayed as "0", e.g.
"0.000" will become "0".

Example: options("rpact.summary.intervalFormat" = "%s - %s")

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

summary.ParameterSet Parameter Set Summary

Description

Displays a summary of ParameterSet object.

Usage

S3 method for class 'ParameterSet'
summary(
object,
...,
type = 1,
digits = NA_integer_,
output = c("all", "title", "overview", "body")

)

summary.ParameterSet 233

Arguments

object A ParameterSet object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

digits Defines how many digits are to be used for numeric values. Must be a positive
integer of length 1.

Details

Summarizes the parameters and results of a parameter set.

Value

Returns a SummaryFactory object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object

Summary options

The following options can be set globally:

1. rpact.summary.output.size: one of c("small", "medium", "large"); defines how many
details will be included into the summary; default is "large", i.e., all available details are
displayed.

2. rpact.summary.justify: one of c("right", "left", "centre"); shall the values be right-
justified (the default), left-justified or centered.

3. rpact.summary.width: defines the maximum number of characters to be used per line (de-
fault is 83).

4. rpact.summary.intervalFormat: defines how intervals will be displayed in the summary,
default is "[%s; %s]".

5. rpact.summary.digits: defines how many digits are to be used for numeric values (default
is 3).

6. rpact.summary.digits.probs: defines how many digits are to be used for numeric values
(default is one more than value of rpact.summary.digits, i.e., 4).

7. rpact.summary.trim.zeroes: if TRUE (default) zeroes will always displayed as "0", e.g.
"0.000" will become "0".

Example: options("rpact.summary.intervalFormat" = "%s - %s")

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

234 summary.TrialDesignSet

summary.TrialDesignSet

Trial Design Set Summary

Description

Displays a summary of ParameterSet object.

Usage

S3 method for class 'TrialDesignSet'
summary(object, ..., type = 1, digits = NA_integer_)

Arguments

object A ParameterSet object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

digits Defines how many digits are to be used for numeric values. Must be a positive
integer of length 1.

Details

Summarizes the trial designs.

Value

Returns a SummaryFactory object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object

Summary options

The following options can be set globally:

1. rpact.summary.output.size: one of c("small", "medium", "large"); defines how many
details will be included into the summary; default is "large", i.e., all available details are
displayed.

2. rpact.summary.justify: one of c("right", "left", "centre"); shall the values be right-
justified (the default), left-justified or centered.

3. rpact.summary.width: defines the maximum number of characters to be used per line (de-
fault is 83).

4. rpact.summary.intervalFormat: defines how intervals will be displayed in the summary,
default is "[%s; %s]".

5. rpact.summary.digits: defines how many digits are to be used for numeric values (default
is 3).

6. rpact.summary.digits.probs: defines how many digits are to be used for numeric values
(default is one more than value of rpact.summary.digits, i.e., 4).

SummaryFactory 235

7. rpact.summary.trim.zeroes: if TRUE (default) zeroes will always displayed as "0", e.g.
"0.000" will become "0".

Example: options("rpact.summary.intervalFormat" = "%s - %s")

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

SummaryFactory Summary Factory

Description

Basic class for summaries

t,FieldSet-method Field Set Transpose

Description

Given a FieldSet x, t returns the transpose of x.

Usage

S4 method for signature 'FieldSet'
t(x)

Arguments

x A FieldSet.

Details

Implementation of the base R generic function t

236 testPackage

testPackage Test Package

Description

This function allows the installed package rpact to be tested.

Usage

testPackage(
outDir = ".",
...,
completeUnitTestSetEnabled = TRUE,
types = "tests",
connection = list(token = NULL, secret = NULL)

)

Arguments

outDir The output directory where all test results shall be saved. By default the current
working directory is used.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

completeUnitTestSetEnabled

If TRUE (default) all existing unit tests will be executed; a subset of all unit tests
will be used otherwise.

types The type(s) of tests to be done. Can be one or more of c("tests", "examples",
"vignettes"), default is "tests" only.

connection A list where owners of the rpact validation documentation can enter a token
and a secret to get full access to all unit tests, e.g., to fulfill regulatory require-
ments (see www.rpact.com for more information).

Details

This function creates the subdirectory rpact-tests in the specified output directory and copies all
unit test files of the package to this newly created directory. Then the function runs all tests (or
a subset of all tests if completeUnitTestSetEnabled is FALSE) using testInstalledPackage.
The test results will be saved to the text file testthat.Rout that can be found in the subdirectory
rpact-tests.

Value

The value of completeUnitTestSetEnabled will be returned invisible.

Examples

Not run:
testPackage()

End(Not run)

https://www.rpact.com

test_plan_section 237

test_plan_section Test Plan Section

Description

The section title or description will be used in the formal validation documentation. For more
information visit https://www.rpact.com

Usage

test_plan_section(section)

Arguments

section The section title or description.

TrialDesign Basic Trial Design

Description

Basic class for trial designs.

Details

TrialDesign is the basic class for

• TrialDesignFisher,

• TrialDesignGroupSequential, and

• TrialDesignInverseNormal.

Fields

kMax The maximum number of stages K. Is a positive integer of length 1 (default value is 3). The
maximum selectable kMax is 20 for group sequential or inverse normal and 6 for Fisher com-
bination test designs.

alpha The significance level alpha, default is ‘0.025‘. Is a positive numeric of length 1.

stages The stage numbers of the trial. Is an integer vector of length kMax.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax (the maximum number of stages).

userAlphaSpending The user defined alpha spending. Numeric vector of length kMax containing
the cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <= alpha_1 <=
... <= alpha_K <= alpha.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax
(the maximum number of stages).

stageLevels The levels for each stage.

https://www.rpact.com

238 TrialDesignConditionalDunnett

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector with length kMax (the
maximum number of stages).

bindingFutility Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in the sense that
the study must be stopped if the futility condition was reached (default is FALSE).

tolerance The numerical tolerance, default is 1e-06. Is a positive numeric of length 1.

TrialDesignCharacteristics

Trial Design Characteristics

Description

Class for trial design characteristics.

Details

TrialDesignCharacteristics contains all fields required to collect the characteristics of a de-
sign. This object should not be created directly; use getDesignCharacteristics() with suitable
arguments to create it.

See Also

getDesignCharacteristics() for getting the design characteristics.

TrialDesignConditionalDunnett

Conditional Dunnett Design

Description

Trial design for conditional Dunnett tests.

Details

This object should not be created directly; use getDesignConditionalDunnett() with suitable
arguments to create a conditional Dunnett test design.

Fields

kMax The maximum number of stages K. Is a positive integer of length 1 (default value is 3). The
maximum selectable kMax is 20 for group sequential or inverse normal and 6 for Fisher com-
bination test designs.

alpha The significance level alpha, default is ‘0.025‘. Is a positive numeric of length 1.

stages The stage numbers of the trial. Is an integer vector of length kMax.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax (the maximum number of stages).

TrialDesignFisher 239

userAlphaSpending The user defined alpha spending. Numeric vector of length kMax containing
the cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <= alpha_1 <=
... <= alpha_K <= alpha.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax
(the maximum number of stages).

stageLevels The levels for each stage.

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector with length kMax (the
maximum number of stages).

bindingFutility Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in the sense that
the study must be stopped if the futility condition was reached (default is FALSE).

tolerance The numerical tolerance, default is 1e-06. Is a positive numeric of length 1.

informationAtInterim The information to be expected at interim, default is informationAtIn-
terim = 0.5. Is a numeric vector of length 1.

secondStageConditioning Logical. The way the second stage p-values are calculated within the
closed system of hypotheses. If secondStageConditioning = FALSE is specified, the uncon-
ditional adjusted p-values are used, otherwise conditional adjusted p-values are calculated,
default is secondStageConditioning = TRUE.

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Is a positive integer of length
1.

See Also

getDesignConditionalDunnett() for creating a conditional Dunnett test design.

TrialDesignFisher Fisher Design

Description

Trial design for Fisher’s combination test.

Details

This object should not be created directly; use getDesignFisher() with suitable arguments to
create a Fisher combination test design.

Fields

kMax The maximum number of stages K. Is a positive integer of length 1 (default value is 3). The
maximum selectable kMax is 20 for group sequential or inverse normal and 6 for Fisher com-
bination test designs.

alpha The significance level alpha, default is ‘0.025‘. Is a positive numeric of length 1.

stages The stage numbers of the trial. Is an integer vector of length kMax.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax (the maximum number of stages).

240 TrialDesignGroupSequential

userAlphaSpending The user defined alpha spending. Numeric vector of length kMax containing
the cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <= alpha_1 <=
... <= alpha_K <= alpha.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax
(the maximum number of stages).

stageLevels The levels for each stage.

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector with length kMax (the
maximum number of stages).

bindingFutility Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in the sense that
the study must be stopped if the futility condition was reached (default is FALSE).

tolerance The numerical tolerance, default is 1e-06. Is a positive numeric of length 1.

method "equalAlpha", "fullAlpha", "noInteraction", or "userDefinedAlpha", default is "equalAl-
pha" (for details, see Wassmer, 1999)

alpha0Vec Stopping for futility bounds for stage-wise p-values.

scale Is a numeric vector of length kMax-1 that applies to Fisher’s design with unequally spaced
information rates.

nonStochasticCurtailment Logical. If TRUE, the stopping rule is based on the phenomenon of
non-stochastic curtailment rather than stochastic reasoning.

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Is a positive integer of length
1.

simAlpha The observed alpha error, if simulations have been performed. Is a numeric vector of
length 1.

iterations The number of iterations used for simulations. Is an integer of length 1.

seed The seed used for random number generation. Is a numeric vector of length 1.

See Also

getDesignFisher() for creating a Fisher combination test design.

TrialDesignGroupSequential

Group Sequential Design

Description

Trial design for group sequential design.

Details

This object should not be created directly; use getDesignGroupSequential() with suitable argu-
ments to create a group sequential design.

TrialDesignGroupSequential 241

Fields

kMax The maximum number of stages K. Is a positive integer of length 1 (default value is 3). The
maximum selectable kMax is 20 for group sequential or inverse normal and 6 for Fisher com-
bination test designs.

alpha The significance level alpha, default is ‘0.025‘. Is a positive numeric of length 1.

stages The stage numbers of the trial. Is an integer vector of length kMax.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax (the maximum number of stages).

userAlphaSpending The user defined alpha spending. Numeric vector of length kMax containing
the cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <= alpha_1 <=
... <= alpha_K <= alpha.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax
(the maximum number of stages).

stageLevels The levels for each stage.

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector with length kMax (the
maximum number of stages).

bindingFutility Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in the sense that
the study must be stopped if the futility condition was reached (default is FALSE).

tolerance The numerical tolerance, default is 1e-06. Is a positive numeric of length 1.

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Pampallona & Tsiatis ("PT"), Hay-
bittle & Peto ("HP"), Optimum design within Wang & Tsiatis class ("WToptimum"), O’Brien &
Fleming type alpha spending ("asOF"), Pocock type alpha spending ("asP"), Kim & DeMets
alpha spending ("asKD"), Hwang, Shi & DeCani alpha spending ("asHSD"), user defined al-
pha spending ("asUser"), no early efficacy stop ("noEarlyEfficacy"), default is "OF".

beta Type II error rate, necessary for providing sample size calculations
(e.g., getSampleSizeMeans()), beta spending function designs, or optimum designs, default
is 0.20. Is a positive numeric of length 1.

deltaWT Delta for Wang & Tsiatis Delta class. Is a numeric vector of length 1.

deltaPT1 Delta1 for Pampallona & Tsiatis class rejecting H0 boundaries. Is a numeric vector of
length 1.

deltaPT0 Delta0 for Pampallona & Tsiatis class rejecting H1 boundaries. Is a numeric vector of
length 1.

futilityBounds The futility bounds for each stage of the trial. Is a numeric vector of length kMax
- 1, where kMax is the maximum number of stages.

gammaA Parameter for alpha spending function. Is a numeric vector of length 1.

gammaB Parameter for beta spending function. Is a numeric vector of length 1.

optimizationCriterion Optimization criterion for optimum design within Wang & Tsiatis class
("ASNH1", "ASNIFH1", "ASNsum"), default is "ASNH1".

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Is a positive integer of length
1.

betaSpent The cumulative beta level spent at each stage of the trial. For beta-spending designs, is
a numeric vector of length kMax (the maximum number of stages).

242 TrialDesignInverseNormal

typeBetaSpending Type of beta spending. Type of of beta spending is one of the following:
O’Brien & Fleming type beta spending, Pocock type beta spending, Kim & DeMets beta
spending, Hwang, Shi & DeCani beta spending, user defined beta spending ("bsOF", "bsP",
"bsKD", "bsHSD", "bsUser", default is "none").

userBetaSpending The user defined beta spending. Vector of length kMax containing the cumula-
tive beta-spending up to each interim stage.

power The one-sided power at each stage of the trial. Is a numeric vector of length kMax (the
maximum number of stages).

twoSidedPower Two-sided power at each stage of the trial. Is a numeric vector of length kMax (the
maximum number of stages).

constantBoundsHP The constant bounds up to stage kMax - 1 for the Haybittle & Peto design
(default is 3).

betaAdjustment Logical. If TRUE, beta spending values are linearly adjusted if an overlapping of
decision regions for futility stopping at earlier stages occurs. Only applicable for two-sided
beta-spending designs.

delayedInformation Delay of information for delayed response designs. Is a numeric value or a
numeric vector of length kMax - 1.

decisionCriticalValues TODO

reversalProbabilities TODO

See Also

getDesignGroupSequential() for creating a group sequential design.

TrialDesignInverseNormal

Inverse Normal Design

Description

Trial design for inverse normal method.

Details

This object should not be created directly; use getDesignInverseNormal() with suitable argu-
ments to create a inverse normal design.

Fields

kMax The maximum number of stages K. Is a positive integer of length 1 (default value is 3). The
maximum selectable kMax is 20 for group sequential or inverse normal and 6 for Fisher com-
bination test designs.

alpha The significance level alpha, default is ‘0.025‘. Is a positive numeric of length 1.

stages The stage numbers of the trial. Is an integer vector of length kMax.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax (the maximum number of stages).

TrialDesignInverseNormal 243

userAlphaSpending The user defined alpha spending. Numeric vector of length kMax containing
the cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <= alpha_1 <=
... <= alpha_K <= alpha.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax
(the maximum number of stages).

stageLevels The levels for each stage.

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector with length kMax (the
maximum number of stages).

bindingFutility Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in the sense that
the study must be stopped if the futility condition was reached (default is FALSE).

tolerance The numerical tolerance, default is 1e-06. Is a positive numeric of length 1.

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Pampallona & Tsiatis ("PT"), Hay-
bittle & Peto ("HP"), Optimum design within Wang & Tsiatis class ("WToptimum"), O’Brien &
Fleming type alpha spending ("asOF"), Pocock type alpha spending ("asP"), Kim & DeMets
alpha spending ("asKD"), Hwang, Shi & DeCani alpha spending ("asHSD"), user defined al-
pha spending ("asUser"), no early efficacy stop ("noEarlyEfficacy"), default is "OF".

beta Type II error rate, necessary for providing sample size calculations
(e.g., getSampleSizeMeans()), beta spending function designs, or optimum designs, default
is 0.20. Is a positive numeric of length 1.

deltaWT Delta for Wang & Tsiatis Delta class. Is a numeric vector of length 1.

deltaPT1 Delta1 for Pampallona & Tsiatis class rejecting H0 boundaries. Is a numeric vector of
length 1.

deltaPT0 Delta0 for Pampallona & Tsiatis class rejecting H1 boundaries. Is a numeric vector of
length 1.

futilityBounds The futility bounds for each stage of the trial. Is a numeric vector of length kMax
- 1, where kMax is the maximum number of stages.

gammaA Parameter for alpha spending function. Is a numeric vector of length 1.

gammaB Parameter for beta spending function. Is a numeric vector of length 1.

optimizationCriterion Optimization criterion for optimum design within Wang & Tsiatis class
("ASNH1", "ASNIFH1", "ASNsum"), default is "ASNH1".

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Is a positive integer of length
1.

betaSpent The cumulative beta level spent at each stage of the trial. For beta-spending designs, is
a numeric vector of length kMax (the maximum number of stages).

typeBetaSpending Type of beta spending. Type of of beta spending is one of the following:
O’Brien & Fleming type beta spending, Pocock type beta spending, Kim & DeMets beta
spending, Hwang, Shi & DeCani beta spending, user defined beta spending ("bsOF", "bsP",
"bsKD", "bsHSD", "bsUser", default is "none").

userBetaSpending The user defined beta spending. Vector of length kMax containing the cumula-
tive beta-spending up to each interim stage.

power The one-sided power at each stage of the trial. Is a numeric vector of length kMax (the
maximum number of stages).

twoSidedPower Two-sided power at each stage of the trial. Is a numeric vector of length kMax (the
maximum number of stages).

244 TrialDesignPlanMeans

constantBoundsHP The constant bounds up to stage kMax - 1 for the Haybittle & Peto design
(default is 3).

betaAdjustment Logical. If TRUE, beta spending values are linearly adjusted if an overlapping of
decision regions for futility stopping at earlier stages occurs. Only applicable for two-sided
beta-spending designs.

delayedInformation Delay of information for delayed response designs. Is a numeric value or a
numeric vector of length kMax - 1.

decisionCriticalValues TODO

reversalProbabilities TODO

See Also

getDesignInverseNormal() for creating a inverse normal design.

TrialDesignPlan Basic Trial Design Plan

Description

Basic class for trial design plans.

Details

TrialDesignPlan is the basic class for

• TrialDesignPlanMeans,

• TrialDesignPlanRates, and

• TrialDesignPlanSurvival.

TrialDesignPlanMeans Trial Design Plan Means

Description

Trial design plan for means.

Details

This object cannot be created directly; use getSampleSizeMeans() with suitable arguments to
create a design plan for a dataset of means.

TrialDesignPlanRates 245

TrialDesignPlanRates Trial Design Plan Rates

Description

Trial design plan for rates.

Details

This object cannot be created directly; use getSampleSizeRates() with suitable arguments to
create a design plan for a dataset of rates.

TrialDesignPlanSurvival

Trial Design Plan Survival

Description

Trial design plan for survival data.

Details

This object cannot be created directly; use getSampleSizeSurvival() with suitable arguments to
create a design plan for a dataset of survival data.

TrialDesignSet Class for trial design sets.

Description

TrialDesignSet is a class for creating a collection of different trial designs.

Details

This object cannot be created directly; better use getDesignSet() with suitable arguments to create
a set of designs.

Fields

designs The designs (optional).
design The master design (optional).

Methods

add(...) Adds ’designs’ OR a ’design’ and/or a design parameter, e.g., deltaWT = c(0.1, 0.3, 0.4)

See Also

getDesignSet()

246 utilitiesForPiecewiseExponentialDistribution

utilitiesForPiecewiseExponentialDistribution

The Piecewise Exponential Distribution

Description

Distribution function, quantile function and random number generation for the piecewise exponen-
tial distribution.

Usage

getPiecewiseExponentialDistribution(
time,
...,
piecewiseSurvivalTime = NA_real_,
piecewiseLambda = NA_real_,
kappa = 1

)

ppwexp(t, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

getPiecewiseExponentialQuantile(
quantile,
...,
piecewiseSurvivalTime = NA_real_,
piecewiseLambda = NA_real_,
kappa = 1

)

qpwexp(q, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

getPiecewiseExponentialRandomNumbers(
n,
...,
piecewiseSurvivalTime = NA_real_,
piecewiseLambda = NA_real_,
kappa = 1

)

rpwexp(n, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of

utilitiesForPiecewiseExponentialDistribution 247

the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

t, time Vector of time values.
s, piecewiseSurvivalTime

Vector of start times defining the "time pieces".

lambda, piecewiseLambda

Vector of lambda values (hazard rates) corresponding to the start times.

q, quantile Vector of quantiles.

n Number of observations.

Details

getPiecewiseExponentialDistribution() (short: ppwexp()), getPiecewiseExponentialQuantile()
(short: qpwexp()), and getPiecewiseExponentialRandomNumbers() (short: rpwexp()) provide
probabilities, quantiles, and random numbers according to a piecewise exponential or a Weibull dis-
tribution. The piecewise definition is performed through a vector of starting times (piecewiseSurvivalTime)
and a vector of hazard rates (piecewiseLambda). You can also use a list that defines the starting
times and piecewise lambdas together and define piecewiseSurvivalTime as this list. The list needs
to have the form, e.g., piecewiseSurvivalTime <- list("0 - <6" = 0.025, "6 - <9" = 0.04, "9 - <15"
= 0.015, ">=15" = 0.007) . For the Weibull case, you can also specify a shape parameter kappa in
order to calculate probabilities, quantiles, or random numbers. In this case, no piecewise definition
is possible, i.e., only piecewiseLambda (as a single value) and kappa need to be specified.

Value

A numeric value or vector will be returned.

Examples

Calculate probabilties for a range of time values for a
piecewise exponential distribution with hazard rates
0.025, 0.04, 0.015, and 0.007 in the intervals
[0, 6), [6, 9), [9, 15), [15, Inf), respectively,
and re-return the time values:
piecewiseSurvivalTime <- list(

"0 - <6" = 0.025,
"6 - <9" = 0.04,
"9 - <15" = 0.015,
">=15" = 0.01

)
y <- getPiecewiseExponentialDistribution(seq(0, 150, 15),

piecewiseSurvivalTime = piecewiseSurvivalTime
)
getPiecewiseExponentialQuantile(y,

piecewiseSurvivalTime = piecewiseSurvivalTime
)

248 utilitiesForSurvivalTrials

utilitiesForSurvivalTrials

Survival Helper Functions for Conversion of Pi, Lambda, Median

Description

Functions to convert pi, lambda and median values into each other.

Usage

getLambdaByPi(piValue, eventTime = 12, kappa = 1)

getLambdaByMedian(median, kappa = 1)

getHazardRatioByPi(pi1, pi2, eventTime = 12, kappa = 1)

getPiByLambda(lambda, eventTime = 12, kappa = 1)

getPiByMedian(median, eventTime = 12, kappa = 1)

getMedianByLambda(lambda, kappa = 1)

getMedianByPi(piValue, eventTime = 12, kappa = 1)

Arguments

piValue, pi1, pi2, lambda, median

Value that shall be converted.

eventTime The assumed time under which the event rates are calculated, default is 12.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the sample result.

Details

Can be used, e.g., to convert median values into pi or lambda values for usage in getSampleSizeSurvival()
or getPowerSurvival().

Value

Returns a numeric value or vector will be returned.

writeDataset 249

writeDataset Write Dataset

Description

Writes a dataset to a CSV file.

Usage

writeDataset(
dataset,
file,
...,
append = FALSE,
quote = TRUE,
sep = ",",
eol = "\n",
na = "NA",
dec = ".",
row.names = TRUE,
col.names = NA,
qmethod = "double",
fileEncoding = "UTF-8"

)

Arguments

dataset A dataset.
file The target CSV file.
... Further arguments to be passed to write.table.
append Logical. Only relevant if file is a character string. If TRUE, the output is appended

to the file. If FALSE, any existing file of the name is destroyed.
quote The set of quoting characters. To disable quoting altogether, use quote = "". See

scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

sep The field separator character. Values on each line of the file are separated by this
character. If sep = "," (the default for writeDataset) the separator is a comma.

eol The character(s) to print at the end of each line (row).
na The string to use for missing values in the data.
dec The character used in the file for decimal points.
row.names Either a logical value indicating whether the row names of dataset are to be

written along with dataset, or a character vector of row names to be written.
col.names Either a logical value indicating whether the column names of dataset are to

be written along with dataset, or a character vector of column names to be
written. See the section on ’CSV files’ for the meaning of col.names = NA.

qmethod A character string specifying how to deal with embedded double quote charac-
ters when quoting strings. Must be one of "double" (default in writeDataset)
or "escape".

250 writeDatasets

fileEncoding Character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

writeDataset() is a wrapper function that coerces the dataset to a data frame and uses
write.table to write it to a CSV file.

See Also

• writeDatasets() for writing multiple datasets,
• readDataset() for reading a single dataset,
• readDatasets() for reading multiple datasets.

Examples

Not run:
datasetOfRates <- getDataset(

n1 = c(11, 13, 12, 13),
n2 = c(8, 10, 9, 11),
events1 = c(10, 10, 12, 12),
events2 = c(3, 5, 5, 6)

)
writeDataset(datasetOfRates, "dataset_rates.csv")

End(Not run)

writeDatasets Write Multiple Datasets

Description

Writes a list of datasets to a CSV file.

Usage

writeDatasets(
datasets,
file,
...,
append = FALSE,
quote = TRUE,
sep = ",",
eol = "\n",
na = "NA",
dec = ".",
row.names = TRUE,
col.names = NA,
qmethod = "double",
fileEncoding = "UTF-8"

)

writeDatasets 251

Arguments

datasets A list of datasets.

file The target CSV file.

... Further arguments to be passed to write.table.

append Logical. Only relevant if file is a character string. If TRUE, the output is appended
to the file. If FALSE, any existing file of the name is destroyed.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

sep The field separator character. Values on each line of the file are separated by
this character. If sep = "," (the default for writeDatasets) the separator is a
comma.

eol The character(s) to print at the end of each line (row).

na The string to use for missing values in the data.

dec The character used in the file for decimal points.

row.names Either a logical value indicating whether the row names of dataset are to be
written along with dataset, or a character vector of row names to be written.

col.names Either a logical value indicating whether the column names of dataset are to
be written along with dataset, or a character vector of column names to be
written. See the section on ’CSV files’ for the meaning of col.names = NA.

qmethod A character string specifying how to deal with embedded double quote charac-
ters when quoting strings. Must be one of "double" (default in writeDatasets)
or "escape".

fileEncoding Character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

The format of the CSV file is optimized for usage of readDatasets().

See Also

• writeDataset() for writing a single dataset,

• readDatasets() for reading multiple datasets,

• readDataset() for reading a single dataset.

Examples

Not run:
d1 <- getDataset(

n1 = c(11, 13, 12, 13),
n2 = c(8, 10, 9, 11),
events1 = c(10, 10, 12, 12),
events2 = c(3, 5, 5, 6)

)
d2 <- getDataset(

n1 = c(9, 13, 12, 13),

252 [,TrialDesignSet-method

n2 = c(6, 10, 9, 11),
events1 = c(10, 10, 12, 12),
events2 = c(4, 5, 5, 6)

)
datasets <- list(d1, d2)
writeDatasets(datasets, "datasets_rates.csv")

End(Not run)

[,TrialDesignSet-method

Access Trial Design by Index

Description

Function to the TrialDesign at position i in a TrialDesignSet object.

Usage

S4 method for signature 'TrialDesignSet'
x[i, j, ..., drop = TRUE]

Details

Can be used to iterate with "[index]"-syntax over all designs in a design set.

Examples

designSet <- getDesignSet(design = getDesignFisher(), alpha = c(0.01, 0.05))
for (i in 1:length(designSet)) {

print(designSet[i]$alpha)
}

Index

∗ analysis functions
getAnalysisResults, 30
getClosedCombinationTestResults,

35
getClosedConditionalDunnettTestResults,

36
getConditionalPower, 38
getConditionalRejectionProbabilities,

40
getFinalConfidenceInterval, 62
getFinalPValue, 64
getRepeatedConfidenceIntervals, 90
getRepeatedPValues, 92
getStageResults, 150
getTestActions, 152

∗ design functions
getDesignCharacteristics, 47
getDesignConditionalDunnett, 49
getDesignFisher, 50
getDesignGroupSequential, 52
getDesignInverseNormal, 55
getGroupSequentialProbabilities,

65
getPowerAndAverageSampleNumber, 77

∗ internal
[,TrialDesignSet-method, 252
AccrualTime, 8
AnalysisResults, 8
AnalysisResultsConditionalDunnett,

8
AnalysisResultsEnrichment, 9
AnalysisResultsEnrichmentInverseNormal,

9
AnalysisResultsFisher, 9
AnalysisResultsGroupSequential, 10
AnalysisResultsInverseNormal, 10
AnalysisResultsMultiArm, 10
AnalysisResultsMultiArmFisher, 11
AnalysisResultsMultiArmInverseNormal,

11
AnalysisResultsMultiHypotheses, 11
as.data.frame.AnalysisResults, 12
as.data.frame.ParameterSet, 12

as.data.frame.PowerAndAverageSampleNumberResult,
13

as.data.frame.StageResults, 14
as.data.frame.TrialDesign, 15
as.data.frame.TrialDesignCharacteristics,

16
as.data.frame.TrialDesignPlan, 17
as.data.frame.TrialDesignSet, 18
as.matrix.FieldSet, 19
ClosedCombinationTestResults, 19
ConditionalPowerResults, 20
dataEnrichmentMeans, 20
dataEnrichmentMeansStratified, 21
dataEnrichmentRates, 21
dataEnrichmentRatesStratified, 21
dataEnrichmentSurvival, 22
dataEnrichmentSurvivalStratified,

22
dataMeans, 22
dataMultiArmMeans, 23
dataMultiArmRates, 23
dataMultiArmSurvival, 23
dataRates, 24
Dataset, 24
DatasetMeans, 25
DatasetRates, 25
DatasetSurvival, 26
dataSurvival, 26
EventProbabilities, 27
FieldSet, 27
getLambdaStepFunction, 67
getLogLevel, 67
getLongFormat, 68
getParameterCaption, 73
getParameterName, 73
getPlotSettings, 76
getSimulatedRejectionsDelayedResponse,

103
getWideFormat, 153
length.TrialDesignSet, 155
names.AnalysisResults, 155
names.FieldSet, 156
names.SimulationResults, 156

253

254 INDEX

names.StageResults, 157
names.TrialDesignSet, 157
NumberOfSubjects, 158
param_accrualIntensity, 158
param_accrualIntensityType, 158
param_accrualTime, 159
param_activeArms, 159
param_adaptations, 159
param_allocationRatioPlanned, 159
param_allocationRatioPlanned_sampleSize,

160
param_alpha, 160
param_alternative, 160
param_alternative_simulation, 161
param_beta, 161
param_bindingFutility, 161
param_calcEventsFunction, 162
param_calcSubjectsFunction, 162
param_conditionalPower, 162
param_conditionalPowerSimulation,

163
param_dataInput, 163
param_design, 163
param_design_with_default, 164
param_digits, 164
param_directionUpper, 164
param_dropoutRate1, 164
param_dropoutRate2, 165
param_dropoutTime, 165
param_effectList, 165
param_effectMatrix, 165
param_effectMeasure, 166
param_epsilonValue, 166
param_eventTime, 166
param_gED50, 166
param_grid, 167
param_groups, 167
param_hazardRatio, 167
param_includeAllParameters, 168
param_informationEpsilon, 168
param_informationRates, 168
param_intersectionTest_Enrichment,

169
param_intersectionTest_MultiArm,

169
param_kappa, 169
param_kMax, 170
param_lambda1, 170
param_lambda2, 170
param_legendPosition, 171
param_maxInformation, 171
param_maxNumberOfEventsPerStage,

171
param_maxNumberOfIterations, 172
param_maxNumberOfSubjects, 172
param_maxNumberOfSubjects_survival,

173
param_maxNumberOfSubjectsPerStage,

172
param_median1, 173
param_median2, 173
param_minNumberOfEventsPerStage,

174
param_minNumberOfSubjectsPerStage,

174
param_niceColumnNamesEnabled, 174
param_nMax, 175
param_normalApproximation, 175
param_nPlanned, 175
param_palette, 176
param_pi1_rates, 176
param_pi1_survival, 176
param_pi2_rates, 176
param_pi2_survival, 177
param_piecewiseSurvivalTime, 177
param_plannedEvents, 177
param_plannedSubjects, 178
param_plotPointsEnabled, 178
param_plotSettings, 178
param_populations, 179
param_rValue, 179
param_seed, 179
param_selectArmsFunction, 179
param_selectPopulationsFunction,

180
param_showSource, 180
param_showStatistics, 180
param_sided, 181
param_slope, 181
param_stage, 181
param_stageResults, 181
param_stDev, 182
param_stDevH1, 182
param_stDevSimulation, 182
param_stratifiedAnalysis, 183
param_successCriterion, 183
param_theta, 183
param_thetaH0, 184
param_thetaH1, 184
param_three_dots, 184
param_three_dots_plot, 185
param_threshold, 185
param_tolerance, 185
param_typeOfComputation, 186

INDEX 255

param_typeOfDesign, 186
param_typeOfSelection, 186
param_typeOfShape, 187
param_userAlphaSpending, 187
param_varianceOption, 188
ParameterSet, 158
PiecewiseSurvivalTime, 188
PlotSettings, 209
PowerAndAverageSampleNumberResult,

211
print.Dataset, 212
print.FieldSet, 212
print.ParameterSet, 213
print.SimulationResults, 213
printCitation, 214
rawDataTwoArmNormal, 214
resetLogLevel, 219
setLogLevel, 221
SimulationResults, 223
SimulationResultsEnrichmentMeans,

224
SimulationResultsEnrichmentRates,

224
SimulationResultsEnrichmentSurvival,

225
SimulationResultsMeans, 225
SimulationResultsMultiArmMeans,

225
SimulationResultsMultiArmRates,

226
SimulationResultsMultiArmSurvival,

226
SimulationResultsRates, 226
SimulationResultsSurvival, 227
StageResults, 227
StageResultsMeans, 228
StageResultsRates, 228
StageResultsSurvival, 229
summary.AnalysisResults, 230
summary.Dataset, 231
summary.ParameterSet, 232
summary.TrialDesignSet, 234
SummaryFactory, 235
t,FieldSet-method, 235
test_plan_section, 237
TrialDesign, 237
TrialDesignCharacteristics, 238
TrialDesignConditionalDunnett, 238
TrialDesignFisher, 239
TrialDesignGroupSequential, 240
TrialDesignInverseNormal, 242
TrialDesignPlan, 244

TrialDesignPlanMeans, 244
TrialDesignPlanRates, 245
TrialDesignPlanSurvival, 245
TrialDesignSet, 245

∗ output formats
getOutputFormat, 71
setOutputFormat, 222

∗ power functions
getPowerMeans, 78
getPowerRates, 81
getPowerSurvival, 83

∗ sample size functions
getSampleSizeMeans, 93
getSampleSizeRates, 95
getSampleSizeSurvival, 97

[,TrialDesignSet-method, 252

AccrualTime, 8, 28, 69
AnalysisResults, 8, 12, 32, 155–157, 230
AnalysisResultsConditionalDunnett, 8,

10
AnalysisResultsEnrichment, 9, 11
AnalysisResultsEnrichmentFisher, 9
AnalysisResultsEnrichmentFisher

(AnalysisResultsMultiArmFisher),
11

AnalysisResultsEnrichmentInverseNormal,
9, 9

AnalysisResultsFisher, 8, 9
AnalysisResultsGroupSequential, 8, 10
AnalysisResultsInverseNormal, 8, 10
AnalysisResultsMultiArm, 10, 11
AnalysisResultsMultiArmFisher, 10, 11
AnalysisResultsMultiArmInverseNormal,

10, 11
AnalysisResultsMultiHypotheses, 11
as.data.frame(), 28, 33, 35, 37, 39, 44, 48,

49, 51, 54, 57, 59, 61, 69, 75, 78, 80,
82, 86, 94, 97, 100, 106, 111, 115,
119, 125, 130, 134, 138, 144, 151,
217

as.data.frame.AnalysisResults, 12
as.data.frame.ParameterSet, 12
as.data.frame.PowerAndAverageSampleNumberResult,

13
as.data.frame.StageResults, 14
as.data.frame.TrialDesign, 15
as.data.frame.TrialDesignCharacteristics,

16
as.data.frame.TrialDesignPlan, 17
as.data.frame.TrialDesignSet, 18
as.matrix(), 28, 33, 35, 37, 39, 44, 48, 49,

51, 54, 57, 59, 61, 69, 75, 78, 80, 82,

256 INDEX

86, 94, 97, 100, 106, 111, 115, 119,
125, 130, 134, 138, 144, 151, 217

as.matrix.FieldSet, 19

character, 67, 73, 152, 155–157, 216
ClosedCombinationTestResults, 19, 35, 37
ConditionalPowerResults, 20, 39

data.frame, 12–18, 20–24, 26, 28, 33, 35, 37,
39, 42, 44, 48, 49, 51, 54, 57, 59, 61,
68, 69, 75, 78, 80, 82, 86, 89, 94, 97,
100, 106, 111, 115, 119, 125, 130,
134, 138, 139, 144–146, 151, 153,
214, 217

dataEnrichmentMeans, 20
dataEnrichmentMeansStratified, 21
dataEnrichmentRates, 21
dataEnrichmentRatesStratified, 21
dataEnrichmentSurvival, 22
dataEnrichmentSurvivalStratified, 22
dataMeans, 22
dataMultiArmMeans, 23
dataMultiArmRates, 23
dataMultiArmSurvival, 23
dataRates, 24
Dataset, 24, 44, 191, 212, 217, 219, 231
DatasetMeans, 24, 25, 43
DatasetRates, 24, 25, 43
DatasetSurvival, 24, 26, 43
dataSurvival, 26

EventProbabilities, 27, 61, 192–194

FieldSet, 13, 19, 27, 156, 212
format, 223

getAccrualTime, 27
getAccrualTime(), 28, 60, 69, 85, 99, 143,

158, 159
getAnalysisResults, 30, 36, 37, 39, 41, 64,

91, 92, 152, 153
getAnalysisResults(), 8–12, 19–24, 26, 44,

71, 155, 189, 200, 221
getAvailablePlotTypes (plotTypes), 210
getClosedCombinationTestResults, 33, 35,

37, 39, 41, 64, 91, 92, 152, 153
getClosedConditionalDunnettTestResults,

33, 36, 36, 39, 41, 64, 91, 92, 152,
153

getClosedConditionalDunnettTestResults(),
49

getConditionalPower, 33, 36, 37, 38, 41, 64,
91, 92, 152, 153

getConditionalPower(), 20
getConditionalRejectionProbabilities,

33, 36, 37, 39, 40, 64, 91, 92, 152,
153

getData, 41
getData(), 89, 119, 139, 145
getDataSet (getDataset), 42
getDataset, 42
getDataset(), 25, 26, 30, 62, 90, 150, 163,

217
getDesignCharacteristics, 47, 50, 51, 54,

58, 65, 78
getDesignCharacteristics(), 238
getDesignConditionalDunnett, 48, 49, 51,

54, 58, 65, 78
getDesignConditionalDunnett(), 37, 238,

239
getDesignFisher, 48, 50, 50, 54, 58, 65, 78
getDesignFisher(), 203, 239, 240
getDesignGroupSequential, 48, 50, 51, 52,

58, 65, 78
getDesignGroupSequential(), 203, 211,

240, 242
getDesignInverseNormal, 48, 50, 51, 54, 55,

65, 78
getDesignInverseNormal(), 203, 242, 244
getDesignSet, 58
getDesignSet(), 51, 54, 58, 208, 245
getEventProbabilities, 60
getFinalConfidenceInterval, 33, 36, 37,

39, 41, 62, 64, 91, 92, 152, 153
getFinalPValue, 33, 36, 37, 39, 41, 64, 64,

91, 92, 152, 153
getGroupSequentialProbabilities, 48, 50,

51, 54, 58, 65, 78
getHazardRatioByPi

(utilitiesForSurvivalTrials),
248

getLambdaByMedian
(utilitiesForSurvivalTrials),
248

getLambdaByPi
(utilitiesForSurvivalTrials),
248

getLambdaStepFunction, 67
getLogLevel, 67
getLogLevel(), 219, 221
getLongFormat, 68
getLongFormat(), 153
getMedianByLambda

(utilitiesForSurvivalTrials),
248

INDEX 257

getMedianByPi
(utilitiesForSurvivalTrials),
248

getNumberOfSubjects, 68
getNumberOfSubjects(), 29
getObjectRCode (rcmd), 215
getObjectRCode(), 216
getObservedInformationRates, 70
getObservedInformationRates(), 33
getOutputFormat, 71, 223
getOutputFormat(), 223
getParameterCaption, 73
getParameterCaption(), 74
getParameterName, 73
getParameterName(), 73
getPiByLambda

(utilitiesForSurvivalTrials),
248

getPiByMedian
(utilitiesForSurvivalTrials),
248

getPiecewiseExponentialDistribution
(utilitiesForPiecewiseExponentialDistribution),
246

getPiecewiseExponentialQuantile
(utilitiesForPiecewiseExponentialDistribution),
246

getPiecewiseExponentialRandomNumbers
(utilitiesForPiecewiseExponentialDistribution),
246

getPiecewiseSurvivalTime, 74
getPiecewiseSurvivalTime(), 61, 85, 99,

142, 177
getPlotSetting()s, 178, 190, 191, 194, 195,

197, 199, 201, 204, 207, 209
getPlotSettings, 76
getPowerAndAverageSampleNumber, 48, 50,

51, 54, 58, 65, 77
getPowerAndAverageSampleNumber(), 204,

211
getPowerMeans, 78, 83, 87
getPowerMeans(), 205
getPowerRates, 80, 81, 87
getPowerRates(), 205
getPowerSurvival, 80, 83, 83
getPowerSurvival(), 205, 248
getRawData, 88
getRawData(), 144, 146
getRepeatedConfidenceIntervals, 33, 36,

37, 39, 41, 64, 90, 92, 152, 153
getRepeatedPValues, 33, 36, 37, 39, 41, 64,

91, 92, 152, 153

getSampleSizeMeans, 93, 97, 101
getSampleSizeMeans(), 53, 56, 161, 205,

211, 241, 243, 244
getSampleSizeRates, 95, 95, 101
getSampleSizeRates(), 205, 245
getSampleSizeSurvival, 95, 97, 97
getSampleSizeSurvival(), 61, 69, 205, 245,

248
getSimulatedRejectionsDelayedResponse,

103
getSimulationEnrichmentMeans, 103
getSimulationEnrichmentMeans(), 224
getSimulationEnrichmentRates, 108
getSimulationEnrichmentRates(), 224
getSimulationEnrichmentSurvival, 112
getSimulationEnrichmentSurvival(), 225
getSimulationMeans, 116
getSimulationMeans(), 41, 42, 225
getSimulationMultiArmMeans, 121
getSimulationMultiArmMeans(), 41, 42,

225
getSimulationMultiArmRates, 127
getSimulationMultiArmRates(), 41, 42,

226
getSimulationMultiArmSurvival, 131
getSimulationMultiArmSurvival(), 41, 42,

226
getSimulationRates, 135
getSimulationRates(), 41, 42, 226
getSimulationSurvival, 141
getSimulationSurvival(), 41, 89, 198, 227
getStageResults, 33, 36, 37, 39, 41, 64, 91,

92, 150, 153
getStageResults(), 35, 37, 38, 40, 64, 92,

152, 181, 200, 228, 229
getTestActions, 33, 36, 37, 39, 41, 64, 91,

92, 152, 152
getWideFormat, 153
getWideFormat(), 68

integer, 155

kable, 154, 154
kable.ParameterSet, 154

length, 59
length.TrialDesignSet, 155
list, 63, 64, 219

make.names, 13–19, 174
matrix, 19, 28, 33, 35, 37, 39, 40, 44, 48, 49,

51, 54, 57, 59, 61, 69, 75, 78, 80, 82,
86, 91, 92, 94, 97, 100, 106, 111,

258 INDEX

115, 119, 125, 130, 134, 138, 144,
151, 217

methods, 29, 33, 36, 37, 39, 48, 50, 51, 54, 57,
59, 62, 69, 75, 78, 80, 82, 87, 94, 97,
101, 107, 112, 115, 120, 125, 130,
135, 139, 147, 152, 231–233, 235

names, 32, 59, 74, 151
names(), 28, 35, 37, 39, 44, 48, 49, 51, 54, 57,

61, 69, 75, 78, 80, 82, 86, 94, 96,
100, 106, 111, 115, 119, 125, 130,
134, 138, 144, 217, 230, 231, 233,
234

names.AnalysisResults, 155
names.FieldSet, 156
names.SimulationResults, 156
names.StageResults, 157
names.TrialDesignSet, 157
nMax, 204
NumberOfSubjects, 69, 158, 193, 194
numeric, 40, 92, 152, 247, 248

param_accrualIntensity, 158
param_accrualIntensityType, 158
param_accrualTime, 159
param_activeArms, 159
param_adaptations, 159
param_allocationRatioPlanned, 159
param_allocationRatioPlanned_sampleSize,

160
param_alpha, 160
param_alternative, 160
param_alternative_simulation, 161
param_beta, 161
param_bindingFutility, 161
param_calcEventsFunction, 162
param_calcSubjectsFunction, 162
param_conditionalPower, 162
param_conditionalPowerSimulation, 163
param_dataInput, 163
param_design, 163
param_design_with_default, 164
param_digits, 164
param_directionUpper, 164
param_dropoutRate1, 164
param_dropoutRate2, 165
param_dropoutTime, 165
param_effectList, 165
param_effectMatrix, 165
param_effectMeasure, 166
param_epsilonValue, 166
param_eventTime, 166
param_gED50, 166

param_grid, 167
param_groups, 167
param_hazardRatio, 167
param_includeAllParameters, 168
param_informationEpsilon, 168
param_informationRates, 168
param_intersectionTest_Enrichment, 169
param_intersectionTest_MultiArm, 169
param_kappa, 169
param_kMax, 170
param_lambda1, 170
param_lambda2, 170
param_legendPosition, 171
param_maxInformation, 171
param_maxNumberOfEventsPerStage, 171
param_maxNumberOfIterations, 172
param_maxNumberOfSubjects, 172
param_maxNumberOfSubjects_survival,

173
param_maxNumberOfSubjectsPerStage, 172
param_median1, 173
param_median2, 173
param_minNumberOfEventsPerStage, 174
param_minNumberOfSubjectsPerStage, 174
param_niceColumnNamesEnabled, 174
param_nMax, 175
param_normalApproximation, 175
param_nPlanned, 175
param_palette, 176
param_pi1_rates, 176
param_pi1_survival, 176
param_pi2_rates, 176
param_pi2_survival, 177
param_piecewiseSurvivalTime, 177
param_plannedEvents, 177
param_plannedSubjects, 178
param_plotPointsEnabled, 178
param_plotSettings, 178
param_populations, 179
param_rValue, 179
param_seed, 179
param_selectArmsFunction, 179
param_selectPopulationsFunction, 180
param_showSource, 180
param_showStatistics, 180
param_sided, 181
param_slope, 181
param_stage, 181
param_stageResults, 181
param_stDev, 182
param_stDevH1, 182
param_stDevSimulation, 182

INDEX 259

param_stratifiedAnalysis, 183
param_successCriterion, 183
param_theta, 183
param_thetaH0, 184
param_thetaH1, 184
param_three_dots, 184
param_three_dots_plot, 185
param_threshold, 185
param_tolerance, 185
param_typeOfComputation, 186
param_typeOfDesign, 186
param_typeOfSelection, 186
param_typeOfShape, 187
param_userAlphaSpending, 187
param_varianceOption, 188
ParameterSet, 154, 158, 196, 213, 232–234
PiecewiseSurvivalTime, 75, 188
plot, 67
plot arguments, 189, 200
plot(), 28, 33, 35, 37, 39, 44, 48, 49, 51, 54,

57, 59, 61, 69, 75, 78, 80, 82, 86, 94,
97, 100, 106, 111, 115, 119, 125,
130, 134, 138, 144, 151, 204, 217

plot.AnalysisResults, 188
plot.AnalysisResults(), 39
plot.Dataset, 191
plot.EventProbabilities, 192
plot.NumberOfSubjects, 194
plot.ParameterSet, 196
plot.SimulationResults, 197
plot.StageResults, 199
plot.StageResults(), 39
plot.SummaryFactory, 202
plot.TrialDesign, 202
plot.TrialDesignPlan, 205
plot.TrialDesignSet, 207
PlotSettings, 209
plotTypes, 210
PowerAndAverageSampleNumberResult, 13,

14, 78, 211
ppwexp

(utilitiesForPiecewiseExponentialDistribution),
246

print, 167, 190, 199, 204, 207, 209
print(), 28, 32, 35, 37, 39, 44, 48, 49, 51, 54,

57, 59, 61, 69, 75, 78, 80, 82, 86, 94,
96, 100, 106, 111, 115, 119, 125,
130, 134, 138, 144, 151, 217, 230,
231, 233, 234

print.Dataset, 212
print.FieldSet, 212
print.ParameterSet, 213

print.SimulationResults, 213
printCitation, 214

qpwexp
(utilitiesForPiecewiseExponentialDistribution),
246

rawDataTwoArmNormal, 214
rcmd, 215
rcmd(), 216
read.table, 216–218
readDataset, 216
readDataset(), 219, 250, 251
readDatasets, 218
readDatasets(), 217, 250, 251
resetLogLevel, 219
resetLogLevel(), 68, 221
reshape, 217
rpact, 220
rpact-package (rpact), 220
rpwexp

(utilitiesForPiecewiseExponentialDistribution),
246

setLogLevel, 221
setLogLevel(), 68, 219
setOutputFormat, 72, 222
setOutputFormat(), 72
SimulationResults, 41, 89, 106, 111, 115,

119, 125, 130, 134, 138, 144, 156,
213, 223

SimulationResultsEnrichmentMeans, 224
SimulationResultsEnrichmentRates, 224
SimulationResultsEnrichmentSurvival,

225
SimulationResultsMeans, 224, 225
SimulationResultsMultiArmMeans, 224,

225
SimulationResultsMultiArmRates, 224,

226
SimulationResultsMultiArmSurvival, 224,

226
SimulationResultsRates, 224, 226
SimulationResultsSurvival, 224, 227
StageResults, 14, 151, 157, 227
StageResultsMeans, 228
StageResultsRates, 228
StageResultsSurvival, 229
summary(), 28, 33, 35, 37, 39, 44, 48, 49, 51,

54, 57, 59, 61, 69, 75, 78, 80, 82, 86,
94, 96, 100, 106, 111, 115, 119, 125,
130, 134, 138, 144, 151, 217

summary.AnalysisResults, 230

260 INDEX

summary.Dataset, 231
summary.ParameterSet, 232
summary.TrialDesignSet, 234
SummaryFactory, 230, 231, 233, 234, 235

t, 235
t,FieldSet-method, 235
test_plan_section, 237
testInstalledPackage, 236
testPackage, 236
thetaH0, 189, 200
TrialDesign, 15, 49, 51, 54, 57, 237
TrialDesignCharacteristics, 16, 48, 238
TrialDesignConditionalDunnett, 238
TrialDesignFisher, 237, 239
TrialDesignGroupSequential, 237, 240
TrialDesignInverseNormal, 237, 242
TrialDesignPlan, 17, 80, 82, 86, 94, 96, 100,

244
TrialDesignPlanMeans, 244
TrialDesignPlanRates, 245
TrialDesignPlanSurvival, 245
TrialDesignSet, 18, 59, 155, 157, 245

utilitiesForPiecewiseExponentialDistribution,
246

utilitiesForSurvivalTrials, 248

write.table, 249–251
writeDataset, 249
writeDataset(), 217, 219, 250, 251
writeDatasets, 250
writeDatasets(), 217, 219, 250

	AccrualTime
	AnalysisResults
	AnalysisResultsConditionalDunnett
	AnalysisResultsEnrichment
	AnalysisResultsEnrichmentInverseNormal
	AnalysisResultsFisher
	AnalysisResultsGroupSequential
	AnalysisResultsInverseNormal
	AnalysisResultsMultiArm
	AnalysisResultsMultiArmFisher
	AnalysisResultsMultiArmInverseNormal
	AnalysisResultsMultiHypotheses
	as.data.frame.AnalysisResults
	as.data.frame.ParameterSet
	as.data.frame.PowerAndAverageSampleNumberResult
	as.data.frame.StageResults
	as.data.frame.TrialDesign
	as.data.frame.TrialDesignCharacteristics
	as.data.frame.TrialDesignPlan
	as.data.frame.TrialDesignSet
	as.matrix.FieldSet
	ClosedCombinationTestResults
	ConditionalPowerResults
	dataEnrichmentMeans
	dataEnrichmentMeansStratified
	dataEnrichmentRates
	dataEnrichmentRatesStratified
	dataEnrichmentSurvival
	dataEnrichmentSurvivalStratified
	dataMeans
	dataMultiArmMeans
	dataMultiArmRates
	dataMultiArmSurvival
	dataRates
	Dataset
	DatasetMeans
	DatasetRates
	DatasetSurvival
	dataSurvival
	EventProbabilities
	FieldSet
	getAccrualTime
	getAnalysisResults
	getClosedCombinationTestResults
	getClosedConditionalDunnettTestResults
	getConditionalPower
	getConditionalRejectionProbabilities
	getData
	getDataset
	getDesignCharacteristics
	getDesignConditionalDunnett
	getDesignFisher
	getDesignGroupSequential
	getDesignInverseNormal
	getDesignSet
	getEventProbabilities
	getFinalConfidenceInterval
	getFinalPValue
	getGroupSequentialProbabilities
	getLambdaStepFunction
	getLogLevel
	getLongFormat
	getNumberOfSubjects
	getObservedInformationRates
	getOutputFormat
	getParameterCaption
	getParameterName
	getPiecewiseSurvivalTime
	getPlotSettings
	getPowerAndAverageSampleNumber
	getPowerMeans
	getPowerRates
	getPowerSurvival
	getRawData
	getRepeatedConfidenceIntervals
	getRepeatedPValues
	getSampleSizeMeans
	getSampleSizeRates
	getSampleSizeSurvival
	getSimulatedRejectionsDelayedResponse
	getSimulationEnrichmentMeans
	getSimulationEnrichmentRates
	getSimulationEnrichmentSurvival
	getSimulationMeans
	getSimulationMultiArmMeans
	getSimulationMultiArmRates
	getSimulationMultiArmSurvival
	getSimulationRates
	getSimulationSurvival
	getStageResults
	getTestActions
	getWideFormat
	kable
	kable.ParameterSet
	length.TrialDesignSet
	names.AnalysisResults
	names.FieldSet
	names.SimulationResults
	names.StageResults
	names.TrialDesignSet
	NumberOfSubjects
	ParameterSet
	param_accrualIntensity
	param_accrualIntensityType
	param_accrualTime
	param_activeArms
	param_adaptations
	param_allocationRatioPlanned
	param_allocationRatioPlanned_sampleSize
	param_alpha
	param_alternative
	param_alternative_simulation
	param_beta
	param_bindingFutility
	param_calcEventsFunction
	param_calcSubjectsFunction
	param_conditionalPower
	param_conditionalPowerSimulation
	param_dataInput
	param_design
	param_design_with_default
	param_digits
	param_directionUpper
	param_dropoutRate1
	param_dropoutRate2
	param_dropoutTime
	param_effectList
	param_effectMatrix
	param_effectMeasure
	param_epsilonValue
	param_eventTime
	param_gED50
	param_grid
	param_groups
	param_hazardRatio
	param_includeAllParameters
	param_informationEpsilon
	param_informationRates
	param_intersectionTest_Enrichment
	param_intersectionTest_MultiArm
	param_kappa
	param_kMax
	param_lambda1
	param_lambda2
	param_legendPosition
	param_maxInformation
	param_maxNumberOfEventsPerStage
	param_maxNumberOfIterations
	param_maxNumberOfSubjects
	param_maxNumberOfSubjectsPerStage
	param_maxNumberOfSubjects_survival
	param_median1
	param_median2
	param_minNumberOfEventsPerStage
	param_minNumberOfSubjectsPerStage
	param_niceColumnNamesEnabled
	param_nMax
	param_normalApproximation
	param_nPlanned
	param_palette
	param_pi1_rates
	param_pi1_survival
	param_pi2_rates
	param_pi2_survival
	param_piecewiseSurvivalTime
	param_plannedEvents
	param_plannedSubjects
	param_plotPointsEnabled
	param_plotSettings
	param_populations
	param_rValue
	param_seed
	param_selectArmsFunction
	param_selectPopulationsFunction
	param_showSource
	param_showStatistics
	param_sided
	param_slope
	param_stage
	param_stageResults
	param_stDev
	param_stDevH1
	param_stDevSimulation
	param_stratifiedAnalysis
	param_successCriterion
	param_theta
	param_thetaH0
	param_thetaH1
	param_three_dots
	param_three_dots_plot
	param_threshold
	param_tolerance
	param_typeOfComputation
	param_typeOfDesign
	param_typeOfSelection
	param_typeOfShape
	param_userAlphaSpending
	param_varianceOption
	PiecewiseSurvivalTime
	plot.AnalysisResults
	plot.Dataset
	plot.EventProbabilities
	plot.NumberOfSubjects
	plot.ParameterSet
	plot.SimulationResults
	plot.StageResults
	plot.SummaryFactory
	plot.TrialDesign
	plot.TrialDesignPlan
	plot.TrialDesignSet
	PlotSettings
	plotTypes
	PowerAndAverageSampleNumberResult
	print.Dataset
	print.FieldSet
	print.ParameterSet
	print.SimulationResults
	printCitation
	rawDataTwoArmNormal
	rcmd
	readDataset
	readDatasets
	resetLogLevel
	rpact
	setLogLevel
	setOutputFormat
	SimulationResults
	SimulationResultsEnrichmentMeans
	SimulationResultsEnrichmentRates
	SimulationResultsEnrichmentSurvival
	SimulationResultsMeans
	SimulationResultsMultiArmMeans
	SimulationResultsMultiArmRates
	SimulationResultsMultiArmSurvival
	SimulationResultsRates
	SimulationResultsSurvival
	StageResults
	StageResultsMeans
	StageResultsRates
	StageResultsSurvival
	summary.AnalysisResults
	summary.Dataset
	summary.ParameterSet
	summary.TrialDesignSet
	SummaryFactory
	t,FieldSet-method
	testPackage
	test_plan_section
	TrialDesign
	TrialDesignCharacteristics
	TrialDesignConditionalDunnett
	TrialDesignFisher
	TrialDesignGroupSequential
	TrialDesignInverseNormal
	TrialDesignPlan
	TrialDesignPlanMeans
	TrialDesignPlanRates
	TrialDesignPlanSurvival
	TrialDesignSet
	utilitiesForPiecewiseExponentialDistribution
	utilitiesForSurvivalTrials
	writeDataset
	writeDatasets
	[,TrialDesignSet-method
	Index

