
Package ‘rpact’
November 11, 2020

Title Confirmatory Adaptive Clinical Trial Design and Analysis

Version 3.0.2

Date 2020-11-09

Description Design and analysis of confirmatory adaptive clinical trials with continuous, bi-
nary, and survival endpoints according to the methods described in the monograph by Wass-
mer and Brannath (2016) <doi:10.1007/978-3-319-32562-0>. This includes classical group se-
quential as well as multi-stage adaptive hypotheses tests that are based on the combination test-
ing principle.

License LGPL-3

Encoding UTF-8

LazyData true

URL https://www.rpact.org

BugReports https://www.rpact.org/bugreport

Language en-US

Depends R (>= 3.4.0)

Imports methods,
stats,
utils,
graphics,
tools,
Rcpp (>= 1.0.0)

LinkingTo Rcpp

Suggests parallel,
ggplot2 (>= 2.2.0),
testthat (>= 2.0.0),
mnormt (>= 1.5-7),
knitr (>= 1.19),
rmarkdown (>= 1.10)

VignetteBuilder knitr, rmarkdown

RoxygenNote 7.1.1

Collate 'RcppExports.R'
'f_core_constants.R'
'class_core_parameter_set.R'
'class_core_plot_settings.R'

1

https://www.rpact.org
https://www.rpact.org/bugreport

2 R topics documented:

'class_analysis_dataset.R'
'f_core_plot.R'
'class_design.R'
'class_analysis_stage_results.R'
'class_analysis_results.R'
'f_core_utilities.R'
'class_time.R'
'class_design_set.R'
'f_core_assertions.R'
'f_design_utilities.R'
'class_design_plan.R'
'class_design_power_and_asn.R'
'class_event_probabilities.R'
'f_simulation_base_survival.R'
'class_simulation_results.R'
'class_summary.R'
'f_analysis_base.R'
'f_analysis_base_means.R'
'f_analysis_base_rates.R'
'f_analysis_base_survival.R'
'f_analysis_multiarm.R'
'f_analysis_multiarm_means.R'
'f_analysis_multiarm_rates.R'
'f_analysis_multiarm_survival.R'
'f_core_output_formats.R'
'f_design_fisher_combination_test.R'
'f_design_group_sequential.R'
'f_design_sample_size_calculator.R'
'f_simulation_base_means.R'
'f_simulation_base_rates.R'
'f_simulation_multiarm.R'
'f_simulation_multiarm_means.R'
'f_simulation_multiarm_rates.R'
'f_simulation_multiarm_survival.R'
'parameter_descriptions.R'
'pkgname.R'

R topics documented:
getAccrualTime . 4
getAnalysisResults . 6
getClosedCombinationTestResults . 10
getClosedConditionalDunnettTestResults . 11
getConditionalPower . 13
getConditionalRejectionProbabilities . 15
getData . 16
getDataset . 17
getDesignCharacteristics . 21
getDesignConditionalDunnett . 22
getDesignFisher . 23
getDesignGroupSequential . 25
getDesignInverseNormal . 28

R topics documented: 3

getDesignSet . 30
getEventProbabilities . 32
getFinalConfidenceInterval . 34
getFinalPValue . 36
getNumberOfSubjects . 37
getOutputFormat . 39
getPiecewiseSurvivalTime . 40
getPowerAndAverageSampleNumber . 43
getPowerMeans . 44
getPowerRates . 46
getPowerSurvival . 49
getRawData . 54
getRepeatedConfidenceIntervals . 55
getRepeatedPValues . 57
getSampleSizeMeans . 58
getSampleSizeRates . 60
getSampleSizeSurvival . 62
getSimulationMeans . 68
getSimulationMultiArmMeans . 73
getSimulationMultiArmRates . 78
getSimulationMultiArmSurvival . 82
getSimulationRates . 90
getSimulationSurvival . 95
getStageResults . 104
getTestActions . 106
plot.AnalysisResults . 107
plot.Dataset . 109
plot.EventProbabilities . 111
plot.NumberOfSubjects . 112
plot.ParameterSet . 114
plot.SimulationResults . 115
plot.StageResults . 117
plot.TrialDesign . 120
plot.TrialDesignPlan . 122
plot.TrialDesignSet . 124
plotTypes . 127
readDataset . 128
readDatasets . 130
rpact . 131
setOutputFormat . 132
testPackage . 134
utilitiesForPiecewiseExponentialDistribution . 135
utilitiesForSurvivalTrials . 137
writeDataset . 138
writeDatasets . 139

Index 142

4 getAccrualTime

getAccrualTime Get Accrual Time

Description

Returns an AccrualTime object that contains the accrual time and the accrual intensity.

Usage

getAccrualTime(
accrualTime = NA_real_,
...,
accrualIntensity = NA_real_,
maxNumberOfSubjects = NA_real_

)

Arguments

accrualTime The assumed accrual time for the study, default is c(0,12) (see details).

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

accrualIntensity

A value or vector of accrual intensities, default is the relative intensity 0.1 (see
details).

maxNumberOfSubjects

The maximum number of subjects.

Value

Returns an AccrualTime object. The following generics (R generic functions) are available for this
result object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

Piecewise accrual

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.
accrualIntensity itself is a value or a vector (depending on the length of accrualtime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

getAccrualTime 5

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity -1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the *relative* in-
tensity how subjects enter the trial. For example, accrualIntensity = c(0.1,0.2) specifies that
in the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = 0.1 meaning that the *absolute* accrual intensity will
be calculated.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getNumberOfSubjects for calculating the number of subjects at given time points.

Examples

Assume that in a trial the accrual after the first 6 months is doubled
and the total accrual time is 30 months.
Further assume that a total of 1000 subjects are entered in the trial.
The number of subjects to be accrued in the first 6 months and afterwards
is achieved through
getAccrualTime(accrualTime = c(0, 6, 30),

accrualIntensity = c(0.1, 0.2), maxNumberOfSubjects = 1000)

The same result is obtained via the list based definition
getAccrualTime(list(

"0 - <6" = 0.1,
"6 - <=30" = 0.2),
maxNumberOfSubjects = 1000)

Calculate the end of accrual at given absolute intensity:
getAccrualTime(accrualTime = c(0, 6),

accrualIntensity = c(18, 36), maxNumberOfSubjects = 1000)

Via the list based definition this is
getAccrualTime(list(

"0 - <6" = 18,
">=6" = 36),
maxNumberOfSubjects = 1000)

You can use an accrual time object in getSampleSizeSurvival() or
getPowerSurvival().
For example, if the maximum number of subjects and the follow up
time needs to be calculated for a given effect size:

6 getAnalysisResults

accrualTime = getAccrualTime(accrualTime = c(0, 6, 30),
accrualIntensity = c(0.1, 0.2))

getSampleSizeSurvival(accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2)

Or if the power and follow up time needs to be calculated for given
number of events and subjects:
accrualTime = getAccrualTime(accrualTime = c(0, 6, 30),

accrualIntensity = c(0.1, 0.2), maxNumberOfSubjects = 110)
getPowerSurvival(accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2,
maxNumberOfEvents = 46)

How to show accrual time details

You can use a sample size or power object as argument for the function
getAccrualTime():
sampleSize <-
getSampleSizeSurvival(accrualTime = c(0, 6), accrualIntensity = c(22, 53),

lambda2 = 0.05, hazardRatio = 0.8, followUpTime = 6)
sampleSize
accrualTime <- getAccrualTime(sampleSize)
accrualTime

getAnalysisResults Get Analysis Results

Description

Calculates and returns the analysis results for the specified design and data.

Usage

getAnalysisResults(
design,
dataInput,
...,
directionUpper = TRUE,
thetaH0 = NA_real_,
nPlanned = NA_real_,
allocationRatioPlanned = 1,
stage = NA_integer_

)

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset. For more information see getDataset.

... Further arguments to be passed to methods (cf. separate functions in "See Also"
below), e.g.,

getAnalysisResults 7

thetaH1 and assumedStDev or pi1, pi2 The assumed effect size or assumed
rates to calculate the conditional power. Depending on the type of dataset,
either thetaH1 (means and survival) or pi1, pi2 (rates) can be specified.
For testing means, an assumed standard deviation can be specified, default
is 1.

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

iterations Iterations for simulating the power for Fisher’s combination test.
If the power for more than one remaining stages is to be determined for
Fisher’s combination test, it is estimated via simulation with specified
iterations, the default is 1000.

seed Seed for simulating the power for Fisher’s combination test. See above,
default is a random seed.

intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple treatment arms. Five
options are available: "Dunnett", "Bonferroni", "Simes", "Sidak", and
"Hierarchical", default is "Dunnett".

varianceOption Defines the way to calculate the variance in multiple treat-
ment arms (> 2) for testing means. Three options are available: "overallPooled",
"pairwisePooled", and "notPooled", default is "overallPooled".

thetaH1 and assumedStDevs or piTreatments, piControl The assumed ef-
fect size or assumed rates to calculate the conditional power in multi-arm
trials. You can specify a value or a vector with elements referring to the
treatment arms.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing;
default is TRUE which means that larger values of the test statistics yield smaller
p-values.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

8 getAnalysisResults

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is the
per-comparison (combined) sample size.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

Given a design and a dataset, at given stage the function calculates the test results (effect sizes, stage-
wise test statistics and p-values, overall p-values and test statistics, conditional rejection probability
(CRP), conditional power, Repeated Confidence Intervals (RCIs), repeated overall p-values, and
final stage p-values, median unbiased effect estimates, and final confidence intervals.

For designs with more than two treatments arms (multi-arm designs) a closed combination test is
performed. That is, additionally the statistics to be used in a closed testing procedure are provided.

The conditional power is calculated only if effect size and sample size is specified. Median unbiased
effect estimates and confidence intervals are calculated if a group sequential design or an inverse
normal combination test design was chosen, i.e., it is not applicable for Fisher’s p-value combination
test design. For the inverse normal combination test design with more than two stages, a warning
informs that the validity of the confidence interval is theoretically shown only if no sample size
change was performed.

A final stage p-value for Fisher’s combination test is calculated only if a two-stage design was
chosen. For Fisher’s combination test, the conditional power for more than one remaining stages is
estimated via simulation.

Final stage p-values, median unbiased effect estimates, and final confidence intervals are not calcu-
lated for multi-arm designs.

Value

Returns an AnalysisResults object. The following generics (R generic functions) are available
for this result object:

• names to obtain the field names,
• print to print the object,
• summary to display a summary of the object,
• plot to plot the object,
• as.data.frame to coerce the object to a data.frame,
• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

getAnalysisResults 9

Note on the dependency of mnormt

If intersectionTest = "Dunnett" or the design is a conditional Dunnett design and the dataset is
a multi-arm dataset, rpact uses the R package mnormt to calculate the analysis results.

See Also

Other analysis functions: getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(),
getTestActions()

Examples

Example 1
Perform an analysis within a three-stage group sequential design with
O'Brien & Fleming boundaries and one-sample data with a continuous outcome
where H0: mu = 1.2 is to be tested

dsnGS <- getDesignGroupSequential()
dataMeans <- getDataset(

n = c(30,30),
means = c(1.96,1.76),
stDevs = c(1.92,2.01))

getAnalysisResults(design = dsnGS, dataInput = dataMeans, thetaH0 = 1.2)

You can obtain the results when performing an inverse normal combination test
with these data by using the commands

dsnIN <- getDesignInverseNormal()
getAnalysisResults(design = dsnIN, dataInput = dataMeans, thetaH0 = 1.2)

Example 2
In a four-stage combination test design with O'Brien & Fleming boundaries
at the first stage the second treatment arm was dropped. With the Bonferroni
intersection test, the results together with the CRP, conditional power
(assuming a total of 40 subjects for each comparison and effect sizes 0.5
and 0.8 for treatment arm 1 and 3, respectively, and standard deviation 1.2),
and repeated RCIs and p-values of a closed adaptive test procedure are
obtained as follows with the given data (treatment arm 4 refers to the
reference group (displayed with summary and plot commands):

data <- getDataset(
n1 = c(22, 23),
n2 = c(21, NA),
n3 = c(20, 25),
n4 = c(25, 27),
means1 = c(1.63, 1.51),
means2 = c(1.4, NA),
means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = c(1.2, 1.4),
stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = c(1.02, 1.18))

design <- getDesignInverseNormal(kMax = 4)

https://cran.r-project.org/package=mnormt

10 getClosedCombinationTestResults

x <- getAnalysisResults(design, dataInput = data, intersectionTest = "Bonferroni",
nPlanned = c(40, 40), thetaH1 = c(0.5, NA, 0.8), assumedStDevs = 1.2)

summary(x)
plot(x, thetaRange = c(0,0.8))

design <- getDesignConditionalDunnett(secondStageConditioning = FALSE)
y <- getAnalysisResults(design, dataInput = data,

nPlanned = c(40), thetaH1 = c(0.5, NA, 0.8), assumedStDevs = 1.2, stage = 1)
summary(y)
plot(y, thetaRange = c(0,0.4))

getClosedCombinationTestResults

Get Closed Combination Test Results

Description

Calculates and returns the results from the closed combination test.

Usage

getClosedCombinationTestResults(stageResults)

Arguments

stageResults The results at given stage, obtained from getStageResults.

Value

Returns a ClosedCombinationTestResults object. The following generics (R generic functions)
are available for this result object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

getClosedConditionalDunnettTestResults 11

See Also

Other analysis functions: getAnalysisResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(),
getTestActions()

Examples

In a four-stage combination test design with O'Brien & Fleming boundaries
at the first stage the second treatment arm was dropped. With the Bonferroni
intersection test, the results of a closed adaptive test procedure are
obtained as follows with the given data (treatment arm 4 refers to the
reference group:
data <- getDataset(

n1 = c(22, 23),
n2 = c(21, NA),
n3 = c(20, 25),
n4 = c(25, 27),
means1 = c(1.63, 1.51),
means2 = c(1.4, NA),
means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = c(1.2, 1.4),
stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = c(1.02, 1.18))

design <- getDesignInverseNormal(kMax = 4)
stageResults <-
getStageResults(design, dataInput = data, intersectionTest = "Bonferroni")
getClosedCombinationTestResults(stageResults)

getClosedConditionalDunnettTestResults

Get Closed Conditional Dunnett Test Results

Description

Calculates and returns the results from the closed conditional Dunnett test.

Usage

getClosedConditionalDunnettTestResults(
stageResults,
...,
stage = stageResults$stage

)

12 getClosedConditionalDunnettTestResults

Arguments

stageResults The results at given stage, obtained from getStageResults.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

For performing the conditional Dunnett test the design must be defined through the function getDesignConditionalDunnett.
See König et al. (2008) and Wassmer & Brannath (2016), chapter 11 for details of the test proce-
dure.

Value

Returns a ClosedCombinationTestResults object. The following generics (R generic functions)
are available for this result object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getConditionalPower(),
getConditionalRejectionProbabilities(), getFinalConfidenceInterval(), getFinalPValue(),
getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

Examples

In a two-stage design a conditional Dunnett test should be performed
where the unconditional second stage p-values should be used for the
test decision.
At the first stage the second treatment arm was dropped. The results of
a closed conditionsal Dunnett test are obtained as follows with the given
data (treatment arm 4 refers to the reference group):
data <- getDataset(

n1 = c(22, 23),
n2 = c(21, NA),
n3 = c(20, 25),
n4 = c(25, 27),

getConditionalPower 13

means1 = c(1.63, 1.51),
means2 = c(1.4, NA),
means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = c(1.2, 1.4),
stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = c(1.02, 1.18))

For getting the results of the closed test procedure, use the following commands:
design <- getDesignConditionalDunnett(secondStageConditioning = FALSE)
stageResults <- getStageResults(design, dataInput = data)
getClosedConditionalDunnettTestResults(stageResults)

getConditionalPower Get Conditional Power

Description

Calculates and returns the conditional power.

Usage

getConditionalPower(stageResults, ..., nPlanned, allocationRatioPlanned = 1)

Arguments

stageResults The results at given stage, obtained from getStageResults.

... Further (optional) arguments to be passed:

thetaH1 and assumedStDev or pi1, pi2 The assumed effect size or assumed
rates to calculate the conditional power. Depending on the type of dataset,
either thetaH1 (means and survival) or pi1, pi2 (rates) can be specified.
For testing means, an assumed standard deviation can be specified, default
is 1.

iterations Iterations for simulating the power for Fisher’s combination test.
If the power for more than one remaining stages is to be determined for
Fisher’s combination test, it is estimated via simulation with specified
iterations, the default value is 10000.

seed Seed for simulating the power for Fisher’s combination test. See above,
default is a random seed.

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is the
per-comparison (combined) sample size.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

14 getConditionalPower

Details

The conditional power is calculated only if the effect size and the sample size is specified.

For Fisher’s combination test, the conditional power for more than one remaining stages is estimated
via simulation.

Value

Returns a ConditionalPowerResults object. The following generics (R generic functions) are
available for this result object:

• names to obtain the field names,
• print to print the object,
• summary to display a summary of the object,
• plot to plot the object,
• as.data.frame to coerce the object to a data.frame,
• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

plot.StageResults or plot.AnalysisResults for plotting the conditional power.

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalRejectionProbabilities(), getFinalConfidenceInterval(), getFinalPValue(),
getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

Examples

design <- getDesignInverseNormal(kMax = 2)
data1 <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
data2 <- getDataset(

n1 = c(22, 13, 22, 13),
n2 = c(22, 11, 22, 11),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 1, 2.5),
stds1 = c(1, 2, 2, 1.3),
stds2 = c(1, 2, 2, 1.3))

stageResults <- getStageResults(
getDesignGroupSequential(kMax = 4),
dataInput = data2, stage = 2, directionUpper = FALSE)

getConditionalPower(stageResults, thetaH1 = -0.4,
nPlanned = c(64, 64), assumedStDev = 1.5, allocationRatioPlanned = 3)

getConditionalRejectionProbabilities 15

getConditionalRejectionProbabilities

Get Conditional Rejection Probabilities

Description

Calculates the conditional rejection probabilities (CRP) for given test results.

Usage

getConditionalRejectionProbabilities(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults.

... Further (optional) arguments to be passed:

iterations Iterations for simulating the conditional rejection probabilities for
Fisher’s combination test. For checking purposes, it can be estimated via
simulation with specified iterations.

seed Seed for simulating the conditional rejection probabilities for Fisher’s
combination test. See above, default is a random seed.

Details

The conditional rejection probability is the probability, under H0, to reject H0 in one of the subse-
quent (remaining) stages. The probability is calculated using the specified design. For testing rates
and the survival design, the normal approximation is used, i.e., it is calculated with the use of the
prototype case testing a mean for normally distributed data with known variance.

The conditional rejection probabilities are provided up to the specified stage.

For Fisher’s combination test, you can check the validity of the CRP calculation via simulation.

Value

Returns a numeric vector of length kMax or in case of multi-arm stage results a matrix (each col-
umn represents a stage, each row a comparison) containing the conditional rejection probabilities.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getFinalConfidenceInterval(), getFinalPValue(), getRepeatedConfidenceIntervals(),
getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Calculate and check CRP for a Fisher's combination test design with
two remaining stages
design <- getDesignFisher(kMax = 4,

informationRates = c(0.1, 0.3, 0.8, 1), alpha = 0.01)
data <- getDataset(n = c(40, 40), events = c(20, 22))
sr <- getStageResults(design, data, thetaH0 = 0.4)
getConditionalRejectionProbabilities(sr)

16 getData

getConditionalRejectionProbabilities(sr, iterations = 100000)

getData Get Simulation Data

Description

Returns the aggregated simulation data.

Usage

getData(x)

Arguments

x A SimulationResults object created by getSimulationMeans,
getSimulationRates, getSimulationSurvival, getSimulationMultiArmMeans,
getSimulationMultiArmRates, or getSimulationMultiArmSurvival.

Details

This function can be used to get the aggregated simulated data from an simulation results object, for
example, obtained by getSimulationSurvival. In this case, the data frame contains the following
columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. pi1: The assumed or derived event rate in the treatment group.

4. pi2: The assumed or derived event rate in the control group.

5. hazardRatio: The hazard ratio under consideration (if available).

6. analysisTime: The analysis time.

7. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

8. eventsPerStage1: The observed number of events per stage in treatment group 1.

9. eventsPerStage2: The observed number of events per stage in treatment group 2.

10. eventsPerStage: The observed number of events per stage in both treatment groups.

11. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

12. eventsNotAchieved: 1 if number of events could not be reached with observed number of
subjects, 0 otherwise.

13. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

14. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher combination test)’

15. logRankStatistic: Z-score statistic which corresponds to a one-sided log-rank test at con-
sidered stage.

getDataset 17

16. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1 or pi1H1 and pi2H1.

17. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

18. hazardRatioEstimateLR: The estimated hazard ratio, derived from the log-rank statistic.

A subset of variables is provided for getSimulationMeans, getSimulationRates, getSimulationMultiArmMeans,
getSimulationMultiArmRates, or getSimulationMultiArmSurvival.

Value

Returns a data.frame.

Examples

results <- getSimulationSurvival(pi1 = seq(0.3,0.6,0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

data <- getData(results)
head(data)
dim(data)

getDataset Get Dataset

Description

Creates a dataset object and returns it.

Usage

getDataset(..., floatingPointNumbersEnabled = FALSE)

Arguments

... A data.frame or some data vectors defining the dataset.
floatingPointNumbersEnabled

If TRUE, sample sizes can be specified as floating-point numbers (this make
sense, e.g., for theoretical comparisons);
by default floatingPointNumbersEnabled = FALSE, i.e., samples sizes defined
as floating-point numbers will be truncated.

Details

The different dataset types DatasetMeans, of DatasetRates, or DatasetSurvival can be created
as follows:

• An element of DatasetMeans for one sample is created by
getDataset(sampleSizes =,means =,stDevs =) where
sampleSizes, means, stDevs are vectors with stagewise sample sizes, means and standard
deviations of length given by the number of available stages.

18 getDataset

• An element of DatasetMeans for two samples is created by
getDataset(sampleSizes1 =,sampleSizes2 =,means1 =,means2 =,
stDevs1 =,stDevs2 =) where sampleSizes1, sampleSizes2, means1, means2, stDevs1,
stDevs2 are vectors with stagewise sample sizes, means and standard deviations for the two
treatment groups of length given by the number of available stages.

• An element of DatasetRates for one sample is created by
getDataset(sampleSizes =,events =) where sampleSizes, events are vectors with stage-
wise sample sizes and events of length given by the number of available stages.

• An element of DatasetRates for two samples is created by
getDataset(sampleSizes1 =,sampleSizes2 =,events1 =,events2 =) where sampleSizes1,
sampleSizes2, events1, events2 are vectors with stagewise sample sizes and events for the
two treatment groups of length given by the number of available stages.

• An element of DatasetSurvival is created by
getDataset(events =,logRanks =,allocationRatios =) where events, logRanks, and
allocation ratios are the stagewise events, (one-sided) logrank statistics, and allocation
ratios.

• An element of DatasetMeans, DatasetRates, and DatasetSurvival for more than one com-
parison is created by adding subsequent digits to the variable names. The system can analyze
these data in a multi-arm many-to-one comparison setting where the group with the highest
index represents the control group.

Prefix overall[Capital case of first letter of variable name]... for the variable names en-
ables entering the overall results and calculates stagewise statistics.

Note that in survival design usually the overall events and logrank test statistics are provided in the
output, so
getDataset(overallEvents=,overallLogRanks =,overallAllocationRatios =)
is the usual command for entering survival data. Note also that for overallLogranks also the z
scores from a Cox regression can be used.

For multi-arm designs the index refers to the considered comparison. For example,
getDataset(events1=c(13,33),logRanks1 = c(1.23,1.55),events2 = c(16,NA),logRanks2 =
c(1.55,NA))
refers to the case where one active arm (1) is considered at both stages whereas active arm 2 was
dropped at interim. Number of events and logrank statistics are entered for the corresponding com-
parison to control (see Examples).

n can be used in place of samplesizes.

Value

Returns a Dataset object. The following generics (R generic functions) are available for this result
object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

getDataset 19

Examples

Create a Dataset of Means (one group):
datasetOfMeans <- getDataset(

n = c(22, 11, 22, 11),
means = c(1, 1.1, 1, 1),
stDevs = c(1, 2, 2, 1.3)

)
datasetOfMeans
datasetOfMeans$show(showType = 2)

datasetOfMeans <- getDataset(
overallSampleSizes = c(22, 33, 55, 66),
overallMeans = c(1.000, 1.033, 1.020, 1.017),
overallStDevs = c(1.00, 1.38, 1.64, 1.58)

)
datasetOfMeans
datasetOfMeans$show(showType = 2)
as.data.frame(datasetOfMeans)

Create a Dataset of Means (two groups):
datasetOfMeans <- getDataset(

n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)
datasetOfMeans

datasetOfMeans <- getDataset(
overallSampleSizes1 = c(22, 33, 55, 66),
overallSampleSizes2 = c(22, 35, 57, 70),
overallMeans1 = c(1, 1.033, 1.020, 1.017),
overallMeans2 = c(1.4, 1.437, 2.040, 2.126),
overallStDevs1 = c(1, 1.38, 1.64, 1.58),
overallStDevs2 = c(1, 1.43, 1.82, 1.74)

)
datasetOfMeans

df <- data.frame(
stages = 1:4,
n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)
datasetOfMeans <- getDataset(df)
datasetOfMeans

Create a Dataset of Means (three groups) where the comparison of
treatment arm 1 to control is dropped at the second interim stage:
datasetOfMeans <- getDataset(

overallN1 = c(22, 33, NA),

20 getDataset

overallN2 = c(20, 34, 56),
overallN3 = c(22, 31, 52),
overallMeans1 = c(1.64, 1.54, NA),
overallMeans2 = c(1.7, 1.5, 1.77),
overallMeans3 = c(2.5, 2.06, 2.99),
overallStDevs1 = c(1.5, 1.9, NA),
overallStDevs2 = c(1.3, 1.3, 1.1),
overallStDevs3 = c(1, 1.3, 1.8))

datasetOfMeans

Create a Dataset of Rates (one group):
datasetOfRates <- getDataset(

n = c(8, 10, 9, 11),
events = c(4, 5, 5, 6)

)
datasetOfRates

Create a Dataset of Rates (two groups):
datasetOfRates <- getDataset(

n2 = c(8, 10, 9, 11),
n1 = c(11, 13, 12, 13),
events2 = c(3, 5, 5, 6),
events1 = c(10, 10, 12, 12)

)
datasetOfRates

Create a Dataset of Rates (three groups) where the comparison of
treatment arm 2 to control is dropped at the first interim stage:
datasetOfRates <- getDataset(

overallN1 = c(22, 33, 44),
overallN2 = c(20, NA, NA),
overallN3 = c(20, 34, 44),
overallEvents1 = c(11, 14, 22),
overallEvents2 = c(17, NA, NA),
overallEvents3 = c(17, 19, 33))

datasetOfRates

Create a Survival Dataset
datasetSurvival <- getDataset(

overallEvents = c(8, 15, 19, 31),
overallAllocationRatios = c(1, 1, 1, 2),
overallLogRanks = c(1.52, 1.98, 1.99, 2.11)

)
datasetSurvival

Create a Survival Dataset with four comparisons where treatment
arm 2 was dropped at the first interim stage, and treatment arm 4
at the second.
datasetSurvival <- getDataset(

overallEvents1 = c(18, 45, 56),
overallEvents2 = c(22, NA, NA),
overallEvents3 = c(12, 41, 56),
overallEvents4 = c(27, 56, NA),
overallLogRanks1 = c(1.52, 1.98, 1.99),
overallLogRanks2 = c(3.43, NA, NA),
overallLogRanks3 = c(1.45, 1.67, 1.87),
overallLogRanks4 = c(1.12, 1.33, NA)

getDesignCharacteristics 21

)
datasetSurvival

getDesignCharacteristics

Get Design Characteristics

Description

Calculates the characteristics of a design and returns it.

Usage

getDesignCharacteristics(design)

Arguments

design The trial design.

Details

Calculates the inflation factor (IF), the expected reduction in sample size under H1, under H0, and
under a value in between H0 and H1. Furthermore, absolute information values are calculated under
the prototype case testing H0: mu = 0 against H1: mu = 1.

Value

Returns a TrialDesignCharacteristics object. The following generics (R generic functions) are
available for this result object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignConditionalDunnett(), getDesignFisher(), getDesignGroupSequential(),
getDesignInverseNormal(), getPowerAndAverageSampleNumber()

22 getDesignConditionalDunnett

Examples

Calculate design characteristics for a three-stage O'Brien & Fleming
design at power 90% and compare it with Pocock's design.
getDesignCharacteristics(getDesignGroupSequential(beta = 0.1))
getDesignCharacteristics(getDesignGroupSequential(beta = 0.1, typeOfDesign = "P"))

getDesignConditionalDunnett

Get Design Conditional Dunnett Test

Description

Defines the design to perform an analysis with the conditional Dunnett test.

Usage

getDesignConditionalDunnett(
alpha = 0.025,
informationAtInterim = 0.5,
secondStageConditioning = TRUE

)

Arguments

alpha The significance level alpha, default is 0.025.
informationAtInterim

The information to be expected at interim, default is informationAtInterim =
0.5.

secondStageConditioning

The way the second stage p-values are calculated within the closed system of
hypotheses. If secondStageConditioning = FALSE is specified, the uncondi-
tional adjusted p-values are used, otherwise conditional adjusted p-values are
calculated, default is secondStageConditioning = TRUE (for details, see König
et al., 2008).

Details

For performing the conditional Dunnett test the design must be defined through this function. You
can define the information fraction and the way of how to compute the second stage p-values only
in the design definition, and not in the analysis call.
See getClosedConditionalDunnettTestResults for an example and König et al. (2008) and
Wassmer & Brannath (2016), chapter 11 for details of the test procedure.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names to obtain the field names,

• print to print the object,

getDesignFisher 23

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignCharacteristics(), getDesignFisher(), getDesignGroupSequential(),
getDesignInverseNormal(), getPowerAndAverageSampleNumber()

getDesignFisher Get Design Fisher

Description

Performs Fisher’s combination test and returns critical values for this design.

Usage

getDesignFisher(
...,
kMax = NA_integer_,
alpha = NA_real_,
method = c("equalAlpha", "fullAlpha", "noInteraction", "userDefinedAlpha"),
userAlphaSpending = NA_real_,
alpha0Vec = NA_real_,
informationRates = NA_real_,
sided = 1,
bindingFutility = NA,
tolerance = 1e-14,
iterations = 0L,
seed = NA_real_

)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kMax The maximum number of stages K. K = 1,2,3,... (default is 3). The maximum
selectable kMax is 10 for group sequential or inverse normal and 6 for Fisher
combination test designs.

alpha The significance level alpha, default is 0.025.

24 getDesignFisher

method "equalAlpha", "fullAlpha", "noInteraction", or "userDefinedAlpha", de-
fault is "equalAlpha" (for details, see Wassmer, 1999).

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

alpha0Vec Stopping for futility bounds for stage-wise p-values.
informationRates

The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax.

sided Is the alternative one-sided (1) or two-sided (2), default is 1.
bindingFutility

If bindingFutility = TRUE is specified the calculation of the critical values is
affected by the futility bounds (default is TRUE).

tolerance The numerical tolerance, default is 1e-14.
iterations The number of simulation iterations, e.g., getDesignFisher(iterations =

100000) checks the validity of the critical values for the default design. The
default value of iterations is 0, i.e., no simulation will be executed.

seed Seed for simulating the power for Fisher’s combination test. See above, default
is a random seed.

Details

getDesignFisher calculates the critical values and stage levels for Fisher’s combination test as
described in Bauer (1989), Bauer and Koehne (1994), Bauer and Roehmel (1995), and Wassmer
(1999) for equally and unequally sized stages.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names to obtain the field names,
• print to print the object,
• summary to display a summary of the object,
• plot to plot the object,
• as.data.frame to coerce the object to a data.frame,
• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getDesignSet for creating a set of designs to compare.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignGroupSequential(),
getDesignInverseNormal(), getPowerAndAverageSampleNumber()

getDesignGroupSequential 25

Examples

Calculate critical values for a two-stage Fisher's combination test
with full level alpha = 0.05 at the final stage and stopping for
futility bound alpha0 = 0.50, as described in Bauer and Koehne (1994).
getDesignFisher(kMax = 2, method = "fullAlpha", alpha = 0.05, alpha0Vec = 0.50)

getDesignGroupSequential

Get Design Group Sequential

Description

Provides adjusted boundaries and defines a group sequential design.

Usage

getDesignGroupSequential(
...,
kMax = NA_integer_,
alpha = NA_real_,
beta = NA_real_,
sided = 1,
informationRates = NA_real_,
futilityBounds = NA_real_,
typeOfDesign = c("OF", "P", "WT", "HP", "WToptimum", "asP", "asOF", "asKD", "asHSD",

"asUser"),
deltaWT = NA_real_,
optimizationCriterion = c("ASNH1", "ASNIFH1", "ASNsum"),
gammaA = NA_real_,
typeBetaSpending = c("none", "bsP", "bsOF", "bsKD", "bsHSD", "bsUser"),
userAlphaSpending = NA_real_,
userBetaSpending = NA_real_,
gammaB = NA_real_,
bindingFutility = NA,
constantBoundsHP = 3,
twoSidedPower = NA,
tolerance = 1e-08

)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kMax The maximum number of stages K. K = 1,2,3,... (default is 3). The maximum
selectable kMax is 10 for group sequential or inverse normal and 6 for Fisher
combination test designs.

alpha The significance level alpha, default is 0.025.

beta Type II error rate, necessary for providing sample size calculations
(e.g., getSampleSizeMeans), beta spending function designs, or optimum de-
signs, default is 0.20.

26 getDesignGroupSequential

sided Is the alternative one-sided (1) or two-sided (2), default is 1.
informationRates

The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax.

futilityBounds The futility bounds, defined on the test statistic z scale (numeric vector of length
kMax -1).

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Haybittle & Peto
("HP"), Optimum design within Wang & Tsiatis class ("WToptimum"), O’Brien
& Fleming type alpha spending ("asOF"), Pocock type alpha spending ("asP"),
Kim & DeMets alpha spending ("asKD"), Hwang, Shi & DeCani alpha spending
("asHSD"), user defined alpha spending ("asUser"), default is "OF".

deltaWT Delta for Wang & Tsiatis Delta class.
optimizationCriterion

Optimization criterion for optimum design within Wang & Tsiatis class ("ASNH1",
"ASNIFH1", "ASNsum"), default is "ASNH1", see details.

gammaA Parameter for alpha spending function.
typeBetaSpending

Type of beta spending. Type of of beta spending is one of the following: O’Brien
& Fleming type beta spending, Pocock type beta spending, Kim & DeMets
beta spending, Hwang, Shi & DeCani beta spending, user defined beta spending
("bsOF", "bsP", "bsKD", "bsHSD", "bsUser", default is "none").

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

userBetaSpending

The user defined beta spending. Vector of length kMax containing the cumulative
beta-spending up to each interim stage.

gammaB Parameter for beta spending function.
bindingFutility

If bindingFutility = TRUE is specified the calculation of the critical values is
affected by the futility bounds and the futility threshold is binding in the sense
that the study must be stopped if the futility condition was reached (default is
FALSE).

constantBoundsHP

The constant bounds up to stage kMax -1 for the Haybittle & Peto design (default
is 3).

twoSidedPower For two-sided testing, if twoSidedPower = TRUE is specified the sample size
calculation is performed by considering both tails of the distribution. Default
is FALSE, i.e., it is assumed that one tail probability is equal to 0 or the power
should be directed to one part.

tolerance The numerical tolerance, default is 1e-08.

Details

Depending on typeOfDesign some parameters are specified, others not. For example, only if
typeOfDesign "asHSD" is selected, gammaA needs to be specified.

getDesignGroupSequential 27

If an alpha spending approach was specified ("asOF", "asP", "asKD", "asHSD", or "asUser")
additionally a beta spending function can be specified to produce futility bounds.

For optimum designs, "ASNH1" minimizes the expected sample size under H1, "ASNIFH1" min-
imizes the sum of the maximum sample and the expected sample size under H1, and "ASNsum"
minimizes the sum of the maximum sample size, the expected sample size under a value midway
H0 and H1, and the expected sample size under H1.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getDesignSet for creating a set of designs to compare different designs.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignInverseNormal(), getPowerAndAverageSampleNumber()

Examples

Calculate two-sided critical values for a four-stage
Wang & Tsiatis design with Delta = 0.25 at level alpha = 0.05
getDesignGroupSequential(kMax = 4, sided = 2, typeOfDesign = "WT", deltaWT = 0.25)

Calculate the Pocock type alpha spending critical values if the second
interim analysis was performed after 70% of the maximum information was observed
getDesignGroupSequential(informationRates = c(0.4, 0.7), typeOfDesign = "asP")

28 getDesignInverseNormal

getDesignInverseNormal

Get Design Inverse Normal

Description

Provides adjusted boundaries and defines a group sequential design for its use in the inverse normal
combination test.

Usage

getDesignInverseNormal(
...,
kMax = NA_integer_,
alpha = NA_real_,
beta = NA_real_,
sided = 1,
informationRates = NA_real_,
futilityBounds = NA_real_,
typeOfDesign = c("OF", "P", "WT", "HP", "WToptimum", "asP", "asOF", "asKD", "asHSD",

"asUser"),
deltaWT = NA_real_,
optimizationCriterion = c("ASNH1", "ASNIFH1", "ASNsum"),
gammaA = NA_real_,
typeBetaSpending = c("none", "bsP", "bsOF", "bsKD", "bsHSD", "bsUser"),
userAlphaSpending = NA_real_,
userBetaSpending = NA_real_,
gammaB = NA_real_,
bindingFutility = NA,
constantBoundsHP = 3,
twoSidedPower = NA,
tolerance = 1e-08

)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kMax The maximum number of stages K. K = 1,2,3,... (default is 3). The maximum
selectable kMax is 10 for group sequential or inverse normal and 6 for Fisher
combination test designs.

alpha The significance level alpha, default is 0.025.

beta Type II error rate, necessary for providing sample size calculations
(e.g., getSampleSizeMeans), beta spending function designs, or optimum de-
signs, default is 0.20.

sided Is the alternative one-sided (1) or two-sided (2), default is 1.
informationRates

The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax.

getDesignInverseNormal 29

futilityBounds The futility bounds, defined on the test statistic z scale (numeric vector of length
kMax -1).

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Haybittle & Peto
("HP"), Optimum design within Wang & Tsiatis class ("WToptimum"), O’Brien
& Fleming type alpha spending ("asOF"), Pocock type alpha spending ("asP"),
Kim & DeMets alpha spending ("asKD"), Hwang, Shi & DeCani alpha spending
("asHSD"), user defined alpha spending ("asUser"), default is "OF".

deltaWT Delta for Wang & Tsiatis Delta class.
optimizationCriterion

Optimization criterion for optimum design within Wang & Tsiatis class ("ASNH1",
"ASNIFH1", "ASNsum"), default is "ASNH1", see details.

gammaA Parameter for alpha spending function.
typeBetaSpending

Type of beta spending. Type of of beta spending is one of the following: O’Brien
& Fleming type beta spending, Pocock type beta spending, Kim & DeMets
beta spending, Hwang, Shi & DeCani beta spending, user defined beta spending
("bsOF", "bsP", "bsKD", "bsHSD", "bsUser", default is "none").

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

userBetaSpending

The user defined beta spending. Vector of length kMax containing the cumulative
beta-spending up to each interim stage.

gammaB Parameter for beta spending function.
bindingFutility

If bindingFutility = TRUE is specified the calculation of the critical values is
affected by the futility bounds and the futility threshold is binding in the sense
that the study must be stopped if the futility condition was reached (default is
FALSE).

constantBoundsHP

The constant bounds up to stage kMax -1 for the Haybittle & Peto design (default
is 3).

twoSidedPower For two-sided testing, if twoSidedPower = TRUE is specified the sample size
calculation is performed by considering both tails of the distribution. Default
is FALSE, i.e., it is assumed that one tail probability is equal to 0 or the power
should be directed to one part.

tolerance The numerical tolerance, default is 1e-08.

Details

Depending on typeOfDesign some parameters are specified, others not. For example, only if
typeOfDesign "asHSD" is selected, gammaA needs to be specified.

If an alpha spending approach was specified ("asOF", "asP", "asKD", "asHSD", or "asUser")
additionally a beta spending function can be specified to produce futility bounds.

For optimum designs, "ASNH1" minimizes the expected sample size under H1, "ASNIFH1" min-
imizes the sum of the maximum sample and the expected sample size under H1, and "ASNsum"
minimizes the sum of the maximum sample size, the expected sample size under a value midway
H0 and H1, and the expected sample size under H1.

30 getDesignSet

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getDesignSet for creating a set of designs to compare different designs.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignGroupSequential(), getPowerAndAverageSampleNumber()

Examples

Calculate two-sided critical values for a four-stage
Wang & Tsiatis design with Delta = 0.25 at level alpha = 0.05
getDesignInverseNormal(kMax = 4, sided = 2, typeOfDesign = "WT", deltaWT = 0.25)

Calculate the Pocock type alpha spending critical values if the second
interim analysis was performed after 70% of information was observed
getDesignInverseNormal(informationRates = c(0.4, 0.7), typeOfDesign = "asP")

getDesignSet Get Design Set

Description

Creates a trial design set object and returns it.

Usage

getDesignSet(...)

getDesignSet 31

Arguments

... designs or design and one or more design parameters, e.g., deltaWT = c(0.1,0.3,0.4).

• design The master design (optional, you need to specify an additional pa-
rameter that shall be varied).

• designs The designs to compare (optional, you need to specify the variable
variedParameters).

Details

Specify a master design and one or more design parameters or a list of designs.

Value

Returns a TrialDesignSet object. The following generics (R generic functions) are available for
this result object:

• names to obtain the field names,

• length to obtain the number of design,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Example 1
design <- getDesignGroupSequential(alpha = 0.05, kMax = 6,

sided = 2, typeOfDesign = "WT", deltaWT = 0.1)
designSet <- getDesignSet()
designSet$add(design = design, deltaWT = c(0.3, 0.4))

if (require(ggplot2)) plot(designSet, type = 1)

Example 2 (shorter script)
design <- getDesignGroupSequential(alpha = 0.05, kMax = 6,

sided = 2, typeOfDesign = "WT", deltaWT = 0.1)
designSet <- getDesignSet(design = design, deltaWT = c(0.3, 0.4))

if (require(ggplot2)) plot(designSet, type = 1)

Example 3 (use of designs instead of design)

32 getEventProbabilities

d1 <- getDesignGroupSequential(alpha = 0.05, kMax = 2,
sided = 1, beta = 0.2, typeOfDesign = "asHSD",
gammaA = 0.5, typeBetaSpending = "bsHSD", gammaB = 0.5)

d2 <- getDesignGroupSequential(alpha = 0.05, kMax = 4,
sided = 1, beta = 0.2, typeOfDesign = "asP",
typeBetaSpending = "bsP")

designSet <- getDesignSet (designs = c(d1, d2),
variedParameters = c("typeOfDesign", "kMax"))

if (require(ggplot2)) plot(designSet, type = 8, nMax = 20)

getEventProbabilities Get Event Probabilities

Description

Returns the event probabilities for specified parameters at given time vector.

Usage

getEventProbabilities(
time,
...,
accrualTime = c(0L, 12L),
accrualIntensity = 0.1,
kappa = 1,
piecewiseSurvivalTime = NA_real_,
lambda2 = NA_real_,
lambda1 = NA_real_,
allocationRatioPlanned = 1,
hazardRatio = NA_real_,
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12L,
maxNumberOfSubjects = NA_real_

)

Arguments

time A numeric vector with time values.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

accrualTime The assumed accrual time intervals for the study, default is c(0,12) (for details
see getAccrualTime).

accrualIntensity

A vector of accrual intensities, default is the relative intensity 0.1 (for details
see getAccrualTime).

getEventProbabilities 33

kappa A numeric value >= 0. A kappa != 1 will be used for the specification of the
shape of the Weibull distribution. Default is 1, i.e., the exponential survival
distribution is used instead of the Weibull distribution. Note that the Weibull
distribution cannot be used for the piecewise definition of the survival time dis-
tribution, i.e., only lambda and kappa need to be specified. This function is
equivalent to pweibull(t,shape = kappa,scale = 1 / lambda) of the stats
package, i.e., the scale parameter is 1 / 'hazard rate'.
For example,
getPiecewiseExponentialDistribution(time = 130,piecewiseLambda = 0.01,kappa
= 4.2) and pweibull(q = 130,shape = 4.2,scale = 1 / 0.01) provide the sam-
ple result.

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime).

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details).

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details).

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

maxNumberOfSubjects

If maxNumberOfSubjects > 0 is specified, the end of accrual at specified accrualIntensity
for the specified number of subjects is determined or accrualIntensity is cal-
culated at fixed end of accrual.

Details

The function computes the overall event probabilities in a two treatment groups design. For details
of the parameters see getSampleSizeSurvival.

Value

Returns a EventProbabilities object. The following generics (R generic functions) are available
for this result object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

34 getFinalConfidenceInterval

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Calculate event probabilities for staggered subjects' entry, piecewisely defined
survival time and hazards, and plot it.
timeVector <- seq(0, 100, 1)
y <- getEventProbabilities(timeVector, accrualTime = c(0, 20, 60),

accrualIntensity = c(5, 20),
piecewiseSurvivalTime = c(0, 20, 80),
lambda2 = c(0.02, 0.06, 0.1),
hazardRatio = 2

)

plot(timeVector, y$overallEventProbabilities, type = 'l')

getFinalConfidenceInterval

Get Final Confidence Interval

Description

Returns the final confidence interval for the parameter of interest. It is based on the prototype case,
i.e., the test for testing a mean for normally distributed variables.

Usage

getFinalConfidenceInterval(
design,
dataInput,
...,
directionUpper = TRUE,
thetaH0 = NA_real_,
tolerance = 1e-06,
stage = NA_integer_

)

getFinalConfidenceInterval 35

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset. For more information see getDataset.

... Further (optional) arguments to be passed:

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if
normalApproximation = FALSE is specified, the binomial test (one sample)
or the exact test of Fisher (two samples) is used for calculating the p-values.
In the survival setting,
normalApproximation = FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing;
default is TRUE which means that larger values of the test statistics yield smaller
p-values.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

tolerance The numerical tolerance, default is 1e-06.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

Depending on design and dataInput the final confidence interval and median unbiased estimate
that is based on the stagewise ordering of the sample space will be calculated and returned. Addi-
tionally, a non-standardized ("general") version is provided, the estimated standard deviation must
be used to obtain the confidence interval for the parameter of interest.

For the inverse normal combination test design with more than two stages, a warning informs that
the validity of the confidence interval is theoretically shown only if no sample size change was
performed.

36 getFinalPValue

Value

Returns a list containing

• finalStage,

• medianUnbiased,

• finalConfidenceInterval,

• medianUnbiasedGeneral, and

• finalConfidenceIntervalGeneral.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalPValue(), getRepeatedConfidenceIntervals(),
getRepeatedPValues(), getStageResults(), getTestActions()

Examples

design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getFinalConfidenceInterval(design, dataInput = data)

getFinalPValue Get Final P Value

Description

Returns the final p-value for given stage results.

Usage

getFinalPValue(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults.

... Only available for backward compatibility.

Details

The calculation of the final p-value is based on the stagewise ordering of the sample space. This
enables the calculation for both the non-adaptive and the adaptive case. For Fisher’s combination
test, it is available for kMax = 2 only.

getNumberOfSubjects 37

Value

Returns a list containing

• finalStage,

• pFinal.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

Examples

design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getFinalPValue(getStageResults(design, dataInput = data))

getNumberOfSubjects Get Number Of Subjects

Description

Returns the number of recruited subjects at given time vector.

Usage

getNumberOfSubjects(
time,
...,
accrualTime = c(0L, 12L),
accrualIntensity = 0.1,
maxNumberOfSubjects = NA_real_

)

Arguments

time A numeric vector with time values.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

accrualTime The assumed accrual time intervals for the study, default is c(0,12) (for details
see getAccrualTime).

accrualIntensity

A vector of accrual intensities, default is the relative intensity 0.1 (for details
see getAccrualTime).

38 getNumberOfSubjects

maxNumberOfSubjects

If maxNumberOfSubjects > 0 is specified, the end of accrual at specified accrualIntensity
for the specified number of subjects is determined or accrualIntensity is cal-
culated at fixed end of accrual.

Details

Calculate number of subjects over time range at given accrual time vector and accrual intensity.
Intensity can either be defined in absolute or relative terms (for the latter, maxNumberOfSubjects
needs to be defined)
The function is used by getSampleSizeSurvival.

Value

Returns a NumberOfSubjects object. The following generics (R generic functions) are available
for this result object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

AccrualTime for defining the accrual time.

Examples

getNumberOfSubjects(time = seq(10, 70, 10), accrualTime = c(0, 20, 60),
accrualIntensity = c(5, 20))

getNumberOfSubjects(time = seq(10, 70, 10), accrualTime = c(0, 20, 60),
accrualIntensity = c(0.1, 0.4), maxNumberOfSubjects = 900)

getOutputFormat 39

getOutputFormat Get Output Format

Description

With this function the format of the standard outputs of all rpact objects can be shown and written
to a file.

Usage

getOutputFormat(
parameterName = NA_character_,
...,
file = NA_character_,
default = FALSE,
fields = TRUE

)

Arguments

parameterName The name of the parameter whose output format shall be returned. Leave the
default NA_character_ if the output format of all parameters shall be returned.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

file An optional file name where to write the output formats (see Details for more
information).

default If TRUE the default output format of the specified parameter(s) will be returned,
default is FALSE.

fields If TRUE the names of all affected object fields will be displayed, default is TRUE.

Details

Output formats can be written to a text file by specifying a file. See setOutputFormat() to learn
how to read a formerly saved file.

Note that the parameterName must not match exactly, e.g., for p-values the following parameter
names will be recognized amongst others:

1. p value

2. p.values

3. p-value

4. pValue

5. rpact.output.format.p.value

Value

A named list of output formats.

See Also

Other output formats: setOutputFormat()

40 getPiecewiseSurvivalTime

Examples

show output format of p values
getOutputFormat("p.value")

set new p value output format
setOutputFormat("p.value", digits = 5, nsmall = 5)

show sample sizes as smallest integers not less than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "ceiling")
getSampleSizeMeans()

show sample sizes as smallest integers not greater than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "floor")
getSampleSizeMeans()

set new sample size output format without round function
setOutputFormat("sample size", digits = 2, nsmall = 2)
getSampleSizeMeans()

reset sample size output format to default
setOutputFormat("sample size")
getSampleSizeMeans()
getOutputFormat("sample size")

write current output format definitions to file
getOutputFormat(file = "rpact_options.txt")

write default output format definitions to file
getOutputFormat(file = "rpact_options.txt", default = TRUE)

load and set output format definitions from file
setOutputFormat(file = "rpact_options.txt")

getPiecewiseSurvivalTime

Get Piecewise Survival Time

Description

Returns a PiecewiseSurvivalTime object that contains the all relevant parameters of an exponen-
tial survival time cumulative distribution function. Use names to obtain the field names.

Usage

getPiecewiseSurvivalTime(
piecewiseSurvivalTime = NA_real_,
...,
lambda1 = NA_real_,
lambda2 = NA_real_,
hazardRatio = NA_real_,
pi1 = NA_real_,
pi2 = NA_real_,

getPiecewiseSurvivalTime 41

median1 = NA_real_,
median2 = NA_real_,
eventTime = 12L,
kappa = 1,
delayedResponseAllowed = FALSE

)

Arguments

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function (see details).

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details).

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details).

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default.

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2,0.5,0.1) (power calculations and simulations) or
seq(0.4,0.6,0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

median1 The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.

eventTime The assumed time under which the event rates are calculated, default is 12.

kappa A numeric value >= 0. A kappa != 1 will be used for the specification of the
shape of the Weibull distribution. Default is 1, i.e., the exponential survival
distribution is used instead of the Weibull distribution. Note that the Weibull
distribution cannot be used for the piecewise definition of the survival time dis-
tribution, i.e., only lambda and kappa need to be specified. This function is
equivalent to pweibull(t,shape = kappa,scale = 1 / lambda) of the stats
package, i.e., the scale parameter is 1 / 'hazard rate'.
For example,
getPiecewiseExponentialDistribution(time = 130,piecewiseLambda = 0.01,kappa
= 4.2) and pweibull(q = 130,shape = 4.2,scale = 1 / 0.01) provide the sam-
ple result.

delayedResponseAllowed

If TRUE, delayed response is allowed; otherwise it will be validated that the
response is not delayed, default is FALSE.

Value

Returns a PiecewiseSurvivalTime object. The following generics (R generic functions) are avail-
able for this result object:

42 getPiecewiseSurvivalTime

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

Staggered patient entry

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

getPiecewiseSurvivalTime(lambda2 = 0.5, hazardRatio = 0.8)

getPiecewiseSurvivalTime(lambda2 = 0.5, lambda1 = 0.4)

getPiecewiseSurvivalTime(pi2 = 0.5, hazardRatio = 0.8)

getPiecewiseSurvivalTime(pi2 = 0.5, pi1 = 0.4)

getPiecewiseSurvivalTime(pi1 = 0.3)

getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4)

getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6, 9),
lambda2 = c(0.025, 0.04, 0.015), hazardRatio = 0.8)

getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6, 9),
lambda2 = c(0.025, 0.04, 0.015),
lambda1 = c(0.025, 0.04, 0.015) * 0.8)

pwst <- getPiecewiseSurvivalTime(list(
"0 - <6" = 0.025,
"6 - <9" = 0.04,
"9 - <15" = 0.015,
"15 - <21" = 0.01,
">=21" = 0.007), hazardRatio = 0.75)

pwst

The object created by getPiecewiseSurvivalTime() can be used directly in
getSampleSizeSurvival():
getSampleSizeSurvival(piecewiseSurvivalTime = pwst)

getPowerAndAverageSampleNumber 43

The object created by getPiecewiseSurvivalTime() can be used directly in
getPowerSurvival():
getPowerSurvival(piecewiseSurvivalTime = pwst,

maxNumberOfEvents = 40, maxNumberOfSubjects = 100)

getPowerAndAverageSampleNumber

Get Power And Average Sample Number

Description

Returns the power and average sample number of the specified design.

Usage

getPowerAndAverageSampleNumber(design, theta = seq(-1, 1, 0.02), nMax = 100)

Arguments

design The trial design.

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

nMax The maximum sample size.

Details

This function returns the power and average sample number (ASN) of the specified design for
the prototype case which is testing H0: mu = mu0 in a one-sample design. theta represents the
standardized effect (mu -mu0) / sigma and power and ASN is calculated for maximum sample size
nMax. For other designs than the one-sample test of a mean the standardized effect needs to be
adjusted accordingly.

Value

Returns a PowerAndAverageSampleNumberResult object. The following generics (R generic func-
tions) are available for this result object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

44 getPowerMeans

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignGroupSequential(), getDesignInverseNormal()

Examples

Calculate power, stopping probabilities, and expected sample
size for the default design with specified theta and nMax
getPowerAndAverageSampleNumber(

getDesignGroupSequential(),
theta = seq(-1, 1, 0.5), nMax = 100)

getPowerMeans Get Power Means

Description

Returns the power, stopping probabilities, and expected sample size for testing means in one or two
samples at given sample size.

Usage

getPowerMeans(
design = NULL,
...,
groups = 2,
normalApproximation = FALSE,
meanRatio = FALSE,
thetaH0 = ifelse(meanRatio, 1, 0),
alternative = seq(0, 1, 0.2),
stDev = 1,
directionUpper = NA,
maxNumberOfSubjects = NA_real_,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

getPowerMeans 45

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. If TRUE, the variance is assumed to be
known, default is FALSE, i.e., the calculations are performed with the t distribu-
tion.

meanRatio If TRUE, the sample size for one-sided testing of H0: mu1 / mu2 = thetaH0 is
calculated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

alternative The alternative hypothesis value for testing means. This can be a vector of
assumed alternatives, default is seq(0,1,0.2).

stDev The standard deviation under which the conditional power calculation is per-
formed, default is 1. If meanRatio = TRUE is specified, stDev defines the coeffi-
cient of variation sigma / mu2.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing;
default is TRUE which means that larger values of the test statistics yield smaller
p-values.

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. For two treatment arms, it is
the maximum number of subjects for both treatment arms.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

Details

At given design the function calculates the power, stopping probabilities, and expected sample size,
for testing means at given sample size. In a two treatment groups design, additionally, an allocation
ratio = n1 / n2 can be specified. A null hypothesis value thetaH0 != 0 for testing the difference of
two means or thetaH0 != 1 for testing the ratio of two means can be specified. For the specified
sample size, critical bounds and stopping for futility bounds are provided at the effect scale (mean,
mean difference, or mean ratio, respectively)

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

46 getPowerRates

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerRates(), getPowerSurvival()

Examples

Calculate the power, stopping probabilities, and expected sample size
for testing H0: mu1 - mu2 = 0 in a two-armed design against a range of
alternatives H1: mu1 - m2 = delta, delta = (0, 1, 2, 3, 4, 5),
standard deviation sigma = 8, maximum sample size N = 80 (both treatment
arms), and an allocation ratio n1/n2 = 2. The design is a three stage
O'Brien & Fleming design with non-binding futility bounds (-0.5, 0.5)
for the two interims. The computation takes into account that the t test
is used (normalApproximation = FALSE).
getPowerMeans(getDesignGroupSequential(alpha = 0.025,

sided = 1, futilityBounds = c(-0.5, 0.5)),
groups = 2, alternative = c(0:5), stDev = 8,
normalApproximation = FALSE, maxNumberOfSubjects = 80,
allocationRatioPlanned = 2)

getPowerRates Get Power Rates

Description

Returns the power, stopping probabilities, and expected sample size for testing rates in one or two
samples at given sample sizes.

Usage

getPowerRates(
design = NULL,
...,
groups = 2,
riskRatio = FALSE,

getPowerRates 47

thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = seq(0.2, 0.5, 0.1),
pi2 = 0.2,
directionUpper = NA,
maxNumberOfSubjects = NA_real_,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.

riskRatio If TRUE, the power for one-sided testing of H0: pi1 / pi2 = thetaH0 is calcu-
lated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

pi1 A numeric value or vector that represents the assumed probability in the active
treatment group if two treatment groups are considered, or the alternative prob-
ability for a one treatment group design, default is seq(0.2,0.5,0.1) (power
calculations and simulations) or seq(0.4,0.6,0.1) (sample size calculations).

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing;
default is TRUE which means that larger values of the test statistics yield smaller
p-values.

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. For two treatment arms, it is
the maximum number of subjects for both treatment arms.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

48 getPowerRates

Details

At given design the function calculates the power, stopping probabilities, and expected sample size,
for testing rates for given maximum sample size. The sample sizes over the stages are calculated
according to the specified information rate in the design. In a two treatment groups design, addi-
tionally, an allocation ratio = n1/n2 can be specified. If a null hypothesis value thetaH0 != 0 for
testing the difference of two rates or thetaH0 != 1 for testing the risk ratio is specified, the for-
mulas according to Farrington & Manning (Statistics in Medicine, 1990) are used (only one-sided
testing). Critical bounds and stopping for futility bounds are provided at the effect scale (rate, rate
difference, or rate ratio, respectively). For the two-sample case, the calculation here is performed at
fixed pi2 as given as argument in the function. Note that the power calculation for rates is always
based on the normal approximation.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerMeans(), getPowerSurvival()

Examples

Calculate the power, stopping probabilities, and expected sample size in a
two-armed design at given maximum sample size N = 200 in a three-stage
O'Brien & Fleming design with information rate vector (0.2,0.5,1),
non-binding futility boundaries (0,0), i.e., the study stops for futility
if the p-value exceeds 0.5 at interm, and allocation ratio = 2 for a range
of pi1 values when testing H0: pi1 - pi2 = -0.1:
getPowerRates(getDesignGroupSequential(informationRates = c(0.2, 0.5, 1),

futilityBounds = c(0, 0)), groups = 2, thetaH0 = -0.1,
pi1 = seq(0.3, 0.6, 0.1), directionUpper = FALSE,
pi2 = 0.7, allocationRatioPlanned = 2, maxNumberOfSubjects = 200)

Calculate the power, stopping probabilities, and expected sample size in a single
arm design at given maximum sample size N = 60 in a three-stage two-sided
O'Brien & Fleming design with information rate vector (0.2, 0.5,1)
for a range of pi1 values when testing H0: pi = 0.3:

getPowerSurvival 49

getPowerRates(getDesignGroupSequential(informationRates = c(0.2, 0.5,1),
sided = 2), groups = 1, thetaH0 = 0.3, pi1 = seq(0.3, 0.5, 0.05),
maxNumberOfSubjects = 60)

getPowerSurvival Get Power Survival

Description

Returns the power, stopping probabilities, and expected sample size for testing the hazard ratio in a
two treatment groups survival design.

Usage

getPowerSurvival(
design = NULL,
...,
typeOfComputation = c("Schoenfeld", "Freedman", "HsiehFreedman"),
thetaH0 = 1,
directionUpper = NA,
pi1 = NA_real_,
pi2 = NA_real_,
lambda1 = NA_real_,
lambda2 = NA_real_,
median1 = NA_real_,
median2 = NA_real_,
kappa = 1,
hazardRatio = NA_real_,
piecewiseSurvivalTime = NA_real_,
allocationRatioPlanned = 1,
eventTime = 12L,
accrualTime = c(0L, 12L),
accrualIntensity = 0.1,
maxNumberOfSubjects = NA_real_,
maxNumberOfEvents = NA_real_,
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12L

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

50 getPowerSurvival

typeOfComputation

Three options are available: "Schoenfeld", "Freedman", "HsiehFreedman",
the default is "Schoenfeld". For details, see Hsieh (Statistics in Medicine,
1992). For non-inferiority testing (i.e., thetaH0 != 1), only Schoenfeld’s for-
mula can be used.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing;
default is TRUE which means that larger values of the test statistics yield smaller
p-values.

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2,0.5,0.1) (power calculations and simulations) or
seq(0.4,0.6,0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details).

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details).

median1 The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.

kappa A numeric value >= 0. A kappa != 1 will be used for the specification of the
shape of the Weibull distribution. Default is 1, i.e., the exponential survival
distribution is used instead of the Weibull distribution. Note that the Weibull
distribution cannot be used for the piecewise definition of the survival time dis-
tribution, i.e., only lambda and kappa need to be specified. This function is
equivalent to pweibull(t,shape = kappa,scale = 1 / lambda) of the stats
package, i.e., the scale parameter is 1 / 'hazard rate'.
For example,
getPiecewiseExponentialDistribution(time = 130,piecewiseLambda = 0.01,kappa
= 4.2) and pweibull(q = 130,shape = 4.2,scale = 1 / 0.01) provide the sam-
ple result.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default.

getPowerSurvival 51

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime).

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time intervals for the study, default is c(0,12) (for details
see getAccrualTime).

accrualIntensity

A vector of accrual intensities, default is the relative intensity 0.1 (for details
see getAccrualTime).

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. If accrual time and accrual
intensity is specified, this will be calculated.

maxNumberOfEvents

maxNumberOfEvents > 0 is the maximum number of events, it determines the
power of the test and needs to be specified.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

Details

At given design the function calculates the power, stopping probabilities, and expected sample
size at given number of events and number of subjects. It also calculates the time when the re-
quired events are expected under the given assumptions (exponentially, piecewise exponentially, or
Weibull distributed survival times and constant or non-constant piecewise accrual). Additionally,
an allocation ratio = n1/n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

The formula of Kim & Tsiatis (Biometrics, 1990) is used to calculate the expected number of events
under the alternative (see also Lakatos & Lan, Statistics in Medicine, 1992). These formulas are
generalized to piecewise survival times and non-constant piecewise accrual over time.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

52 getPowerSurvival

Staggered patient entry

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

Piecewise accrual

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.
accrualIntensity itself is a value or a vector (depending on the length of accrualtime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity -1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the *relative* in-
tensity how subjects enter the trial. For example, accrualIntensity = c(0.1,0.2) specifies that
in the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = 0.1 meaning that the *absolute* accrual intensity will
be calculated.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerMeans(), getPowerRates()

Examples

Fixed sample size with minimum required definitions, pi1 = c(0.4,0.5,0.5) and
pi2 = 0.2 at event time 12, accrual time 12 and follow-up time 6 as default
getPowerSurvival(maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Four stage O'Brien & Fleming group sequential design with minimum required
definitions, pi1 = c(0.4,0.5,0.5) and pi2 = 0.2 at event time 12,
accrual time 12 and follow-up time 6 as default
getPowerSurvival(design = getDesignGroupSequential(kMax = 4),

maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

getPowerSurvival 53

For fixed sample design, determine necessary accrual time if 200 subjects and
30 subjects per time unit can be recruited
getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0),

accrualIntensity = 30, maxNumberOfSubjects = 200)

Determine necessary accrual time if 200 subjects and if the first 6 time units
20 subjects per time unit can be recruited, then 30 subjects per time unit
getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0, 6),

accrualIntensity = c(20, 30), maxNumberOfSubjects = 200)

Determine maximum number of Subjects if the first 6 time units 20 subjects per
time unit can be recruited, and after 10 time units 30 subjects per time unit
getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0, 6, 10),

accrualIntensity = c(20, 30))

Specify accrual time as a list
at <- list(

"0 - <6" = 20,
"6 - Inf" = 30)

getPowerSurvival(maxNumberOfEvents = 40, accrualTime = at, maxNumberOfSubjects = 200)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30)

getPowerSurvival(maxNumberOfEvents = 40, accrualTime = at)

Specify effect size for a two-stage group design with O'Brien & Fleming boundaries
Effect size is based on event rates at specified event time, directionUpper = FALSE
needs to be specified because it should be shown that hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential(kMax = 2), pi1 = 0.2, pi2 = 0.3,

eventTime = 24, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

Effect size is based on event rate at specified event time for the reference group
and hazard ratio, directionUpper = FALSE needs to be specified
because it should be shown that hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential(kMax = 2), hazardRatio = 0.5,

pi2 = 0.3, eventTime = 24, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

Effect size is based on hazard rate for the reference group and hazard ratio,
directionUpper = FALSE needs to be specified because it should be shown that
hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential(kMax = 2), hazardRatio = 0.5,

lambda2 = 0.02, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

Specification of piecewise exponential survival time and hazard ratios
getPowerSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01,0.02,0.04),
hazardRatio = c(1.5, 1.8, 2), maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time as list and hazard ratios
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,

54 getRawData

">=10" = 0.04)
getPowerSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2),
maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time for both treatment arms
getPowerSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015,0.03,0.06), maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time as a list
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getPowerSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2),
maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specify effect size based on median survival times
getPowerSurvival(median1 = 5, median2 = 3,

maxNumberOfEvents = 40, maxNumberOfSubjects = 200, directionUpper = FALSE)

Specify effect size based on median survival times of
Weibull distribtion with kappa = 2
getPowerSurvival(median1 = 5, median2 = 3, kappa = 2,

maxNumberOfEvents = 40, maxNumberOfSubjects = 200, directionUpper = FALSE)

getRawData Get Simulation Raw Data for Survival

Description

Returns the raw survival data which was generated for simulation.

Usage

getRawData(x, aggregate = FALSE)

Arguments

x An SimulationResults object created by getSimulationSurvival.

aggregate Logical. If TRUE the raw data will be aggregated similar to the result of getData,
default is FALSE.

Details

This function works only if getSimulationSurvival was called with a
maxNumberOfRawDatasetsPerStage > 0 (default is 0).

This function can be used to get the simulated raw data from a simulation results object ob-
tained by getSimulationSurvival. Note that getSimulationSurvival must called before with
maxNumberOfRawDatasetsPerStage > 0. The data frame contains the following columns:

getRepeatedConfidenceIntervals 55

1. iterationNumber: The number of the simulation iteration.
2. stopStage: The stage of stopping.
3. subjectId: The subject id (increasing number 1, 2, 3, ...)
4. accrualTime: The accrual time, i.e., the time when the subject entered the trial.
5. treatmentGroup: The treatment group number (1 or 2).
6. survivalTime: The survival time of the subject.
7. dropoutTime: The dropout time of the subject (may be NA).
8. observationTime: The specific observation time.
9. timeUnderObservation: The time under observation is defined as follows:

if (event == TRUE)
timeUnderObservation <- survivalTime;
else if (dropoutEvent == TRUE)
timeUnderObservation <- dropoutTime;
else
timeUnderObservation <- observationTime - accrualTime;

10. event: TRUE if an event occurred; FALSE otherwise.
11. dropoutEvent: TRUE if an dropout event occurred; FALSE otherwise.

Value

Returns a data.frame.

Examples

results <- getSimulationSurvival(pi1 = seq(0.3,0.6,0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50, maxNumberOfRawDatasetsPerStage = 5)

rawData <- getRawData(results)
head(rawData)
dim(rawData)

getRepeatedConfidenceIntervals

Get Repeated Confidence Intervals

Description

Calculates and returns the lower and upper limit of the repeated confidence intervals of the trial.

Usage

getRepeatedConfidenceIntervals(
design,
dataInput,
...,
directionUpper = TRUE,
tolerance = 1e-06,
stage = NA_integer_

)

56 getRepeatedConfidenceIntervals

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset. For more information see getDataset.

... Further arguments to be passed to methods (cf. separate functions in "See Also"
below), e.g.,

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple treatment arms. Five
options are available: "Dunnett", "Bonferroni", "Simes", "Sidak", and
"Hierarchical", default is "Dunnett".

varianceOption Defines the way to calculate the variance in multiple sam-
ples for testing means. Three options are available: "overallPooled",
"pairwisePooled", and "notPooled", default is "overallPooled".

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing;
default is TRUE which means that larger values of the test statistics yield smaller
p-values.

tolerance The numerical tolerance, default is 1e-06.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

The repeated confidence interval at a given stage of the trial contains the parameter values that are
not rejected using the specified sequential design. It can be calculated at each stage of the trial and
can thus be used as a monitoring tool.

The repeated confidence intervals are provided up to the specified stage.

Value

Returns a matrix with 2 rows and kMax columns containing the lower RCI limits in the first row
and the upper RCI limits in the second row, where each column represents a stage.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedPValues(), getStageResults(), getTestActions()

getRepeatedPValues 57

Examples

design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getRepeatedConfidenceIntervals(design, dataInput = data)

getRepeatedPValues Get Repeated P Values

Description

Calculates the repeated p-values for a given test results.

Usage

getRepeatedPValues(stageResults, ..., tolerance = 1e-06)

Arguments

stageResults The results at given stage, obtained from getStageResults.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

tolerance The numerical tolerance, default is 1e-06.

Details

The repeated p-value at a given stage of the trial is defined as the smallest significance level under
which at given test design the test results obtain rejection of the null hypothesis. It can be calculated
at each stage of the trial and can thus be used as a monitoring tool.

The repeated p-values are provided up to the specified stage.

In multi-arm trials, the repeated p-values are defined separately for each treatment comparison
within the closed testing procedure.

Value

Returns a numeric vector of length kMax or in case of multi-arm stage results a matrix (each
column represents a stage, each row a comparison) containing the repeated p values.

Note on the dependency of mnormt

If intersectionTest = "Dunnett" or the design is a conditional Dunnett design and the dataset is
a multi-arm dataset, rpact uses the R package mnormt to calculate the analysis results.

https://cran.r-project.org/package=mnormt

58 getSampleSizeMeans

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getStageResults(), getTestActions()

Examples

design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getRepeatedPValues(getStageResults(design, dataInput = data))

getSampleSizeMeans Get Sample Size Means

Description

Returns the sample size for testing means in one or two samples.

Usage

getSampleSizeMeans(
design = NULL,
...,
groups = 2,
normalApproximation = FALSE,
meanRatio = FALSE,
thetaH0 = ifelse(meanRatio, 1, 0),
alternative = seq(0.2, 1, 0.2),
stDev = 1,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. If TRUE, the variance is assumed to be
known, default is FALSE, i.e., the calculations are performed with the t distribu-
tion.

getSampleSizeMeans 59

meanRatio If TRUE, the sample size for one-sided testing of H0: mu1 / mu2 = thetaH0 is
calculated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

alternative The alternative hypothesis value for testing means. This can be a vector of
assumed alternatives, default is seq(0,1,0.2).

stDev The standard deviation under which the conditional power calculation is per-
formed, default is 1. If meanRatio = TRUE is specified, stDev defines the coeffi-
cient of variation sigma / mu2.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

Details

At given design the function calculates the stage-wise (non-cumulated) and maximum sample size
for testing means. In a two treatment groups design, additionally, an allocation ratio = n1/n2 can be
specified. A null hypothesis value thetaH0 != 0 for testing the difference of two means or thetaH0
!= 1 for testing the ratio of two means can be specified. Critical bounds and stopping for futility
bounds are provided at the effect scale (mean, mean difference, or mean ratio, respectively) for each
sample size calculation separately.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

60 getSampleSizeRates

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeRates(), getSampleSizeSurvival()

Examples

Calculate sample sizes in a fixed sample size parallel group design
with allocation ratio \code{n1 / n2 = 2} for a range of
alternative values 1, ..., 5 with assumed standard deviation = 3.5;
two-sided alpha = 0.05, power 1 - beta = 90%:
getSampleSizeMeans(alpha = 0.05, beta = 0.1, sided = 2, groups = 2,

alternative = seq(1, 5, 1), stDev = 3.5, allocationRatioPlanned = 2)

Calculate sample sizes in a three-stage Pocock paired comparison design testing
H0: mu = 2 for a range of alternative values 3,4,5 with assumed standard
deviation = 3.5; one-sided alpha = 0.05, power 1 - beta = 90%:
getSampleSizeMeans(getDesignGroupSequential(typeOfDesign = "P", alpha = 0.05,

sided = 1, beta = 0.1), groups = 1, thetaH0 = 2,
alternative = seq(3, 5, 1), stDev = 3.5)

getSampleSizeRates Get Sample Size Rates

Description

Returns the sample size for testing rates in one or two samples.

Usage

getSampleSizeRates(
design = NULL,
...,
groups = 2,
normalApproximation = TRUE,
riskRatio = FALSE,
thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = c(0.4, 0.5, 0.6),
pi2 = 0.2,
allocationRatioPlanned = NA_real_

)

getSampleSizeRates 61

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.

normalApproximation

If FALSE, the sample size for the case of one treatment group is calculated exactly
using the binomial distribution, default is TRUE.

riskRatio If TRUE, the sample size for one-sided testing of H0: pi1 / pi2 = thetaH0 is
calculated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

pi1 A numeric value or vector that represents the assumed probability in the active
treatment group if two treatment groups are considered, or the alternative prob-
ability for a one treatment group design, default is seq(0.2,0.5,0.1) (power
calculations and simulations) or seq(0.4,0.6,0.1) (sample size calculations).

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

Details

At given design the function calculates the stage-wise (non-cumulated) and maximum sample size
for testing rates. In a two treatment groups design, additionally, an allocation ratio = n1/n2 can be
specified. If a null hypothesis value thetaH0 != 0 for testing the difference of two rates thetaH0 !=
1 for testing the risk ratio is specified, the sample size formula according to Farrington & Manning
(Statistics in Medicine, 1990) is used. Critical bounds and stopping for futility bounds are provided
at the effect scale (rate, rate difference, or rate ratio, respectively) for each sample size calculation
separately. For the two-sample case, the calculation here is performed at fixed pi2 as given as
argument in the function.

62 getSampleSizeSurvival

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeMeans(), getSampleSizeSurvival()

Examples

Calculate the stage-wise sample sizes, maximum sample sizes, and the optimum
allocation ratios for a range of pi1 values when testing
H0: pi1 - pi2 = -0.1 within a two-stage O'Brien & Fleming design;
alpha = 0.05 one-sided, power 1 - beta = 90%:
getSampleSizeRates(getDesignGroupSequential(kMax = 2, alpha = 0.05,

beta = 0.1), groups = 2, thetaH0 = -0.1, pi1 = seq(0.4, 0.55, 0.025),
pi2 = 0.4, allocationRatioPlanned = 0)

Calculate the stage-wise sample sizes, maximum sample sizes, and the optimum
allocation ratios for a range of pi1 values when testing
H0: pi1 / pi2 = 0.80 within a three-stage O'Brien & Fleming design;
alpha = 0.025 one-sided, power 1 - beta = 90%:
getSampleSizeRates(getDesignGroupSequential(kMax = 3, alpha = 0.025,

beta = 0.1), groups = 2, riskRatio = TRUE, thetaH0 = 0.80,
pi1 = seq(0.3, 0.5, 0.025), pi2 = 0.3, allocationRatioPlanned = 0)

getSampleSizeSurvival Get Sample Size Survival

Description

Returns the sample size for testing the hazard ratio in a two treatment groups survival design.

getSampleSizeSurvival 63

Usage

getSampleSizeSurvival(
design = NULL,
...,
typeOfComputation = c("Schoenfeld", "Freedman", "HsiehFreedman"),
thetaH0 = 1,
pi1 = NA_real_,
pi2 = NA_real_,
lambda1 = NA_real_,
lambda2 = NA_real_,
median1 = NA_real_,
median2 = NA_real_,
kappa = 1,
hazardRatio = NA_real_,
piecewiseSurvivalTime = NA_real_,
allocationRatioPlanned = NA_real_,
eventTime = 12L,
accrualTime = c(0L, 12L),
accrualIntensity = 0.1,
followUpTime = NA_real_,
maxNumberOfSubjects = NA_real_,
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12L

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

typeOfComputation

Three options are available: "Schoenfeld", "Freedman", "HsiehFreedman",
the default is "Schoenfeld". For details, see Hsieh (Statistics in Medicine,
1992). For non-inferiority testing (i.e., thetaH0 != 1), only Schoenfeld’s for-
mula can be used.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

64 getSampleSizeSurvival

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2,0.5,0.1) (power calculations and simulations) or
seq(0.4,0.6,0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details).

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details).

median1 The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.

kappa A numeric value >= 0. A kappa != 1 will be used for the specification of the
shape of the Weibull distribution. Default is 1, i.e., the exponential survival
distribution is used instead of the Weibull distribution. Note that the Weibull
distribution cannot be used for the piecewise definition of the survival time dis-
tribution, i.e., only lambda and kappa need to be specified. This function is
equivalent to pweibull(t,shape = kappa,scale = 1 / lambda) of the stats
package, i.e., the scale parameter is 1 / 'hazard rate'.
For example,
getPiecewiseExponentialDistribution(time = 130,piecewiseLambda = 0.01,kappa
= 4.2) and pweibull(q = 130,shape = 4.2,scale = 1 / 0.01) provide the sam-
ple result.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default.

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime).

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time intervals for the study, default is c(0,12) (for details
see getAccrualTime).

accrualIntensity

A vector of accrual intensities, default is the relative intensity 0.1 (for details
see getAccrualTime).

followUpTime The assumed (additional) follow-up time for the study, default is 6. The total
study duration is accrualTime + followUpTime.

maxNumberOfSubjects

If maxNumberOfSubjects > 0 is specified, the follow-up time for the required
number of events is determined.

getSampleSizeSurvival 65

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

Details

At given design the function calculates the number of events and an estimate for the necessary num-
ber of subjects for testing the hazard ratio in a survival design. It also calculates the time when the
required events are expected under the given assumptions (exponentially, piecewise exponentially,
or Weibull distributed survival times and constant or non-constant piecewise accrual). Additionally,
an allocation ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

Optional argument accountForObservationTimes: if accountForObservationTimes = TRUE, the
number of subjects is calculated assuming specific accrual and follow-up time, default is TRUE.

The formula of Kim & Tsiatis (Biometrics, 1990) is used to calculate the expected number of events
under the alternative (see also Lakatos & Lan, Statistics in Medicine, 1992). These formulas are
generalized to piecewise survival times and non-constant piecewise accrual over time.

Optional argument accountForObservationTimes: if accountForObservationTimes = FALSE,
only the event rates are used for the calculation of the maximum number of subjects.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

Staggered patient entry

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

Piecewise accrual

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.
accrualIntensity itself is a value or a vector (depending on the length of accrualtime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

66 getSampleSizeSurvival

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity -1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the *relative* in-
tensity how subjects enter the trial. For example, accrualIntensity = c(0.1,0.2) specifies that
in the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = 0.1 meaning that the *absolute* accrual intensity will
be calculated.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeMeans(), getSampleSizeRates()

Examples

Fixed sample size trial with median survival 20 vs. 30 months in treatment and
reference group, respectively, alpha = 0.05 (two-sided), and power 1 - beta = 90%.
20 subjects will be recruited per month up to 400 subjects, i.e., accrual time
is 20 months.
getSampleSizeSurvival(alpha = 0.05, sided = 2, beta = 0.1, lambda1 = log(2) / 20,

lambda2 = log(2) / 30, accrualTime = c(0,20), accrualIntensity = 20)

Fixed sample size with minimum required definitions, pi1 = c(0.4,0.5,0.6) and
pi2 = 0.2 at event time 12, accrual time 12 and follow-up time 6 as default,
only alpha = 0.01 is specified
getSampleSizeSurvival(alpha = 0.01)

Four stage O'Brien & Fleming group sequential design with minimum required
definitions, pi1 = c(0.4,0.5,0.6) and pi2 = 0.2 at event time 12,
accrual time 12 and follow-up time 6 as default
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 4))

For fixed sample design, determine necessary accrual time if 200 subjects and
30 subjects per time unit can be recruited
getSampleSizeSurvival(accrualTime = c(0), accrualIntensity = c(30),

maxNumberOfSubjects = 200)

Determine necessary accrual time if 200 subjects and if the first 6 time units
20 subjects per time unit can be recruited, then 30 subjects per time unit
getSampleSizeSurvival(accrualTime = c(0, 6), accrualIntensity = c(20, 30),

maxNumberOfSubjects = 200)

Determine maximum number of Subjects if the first 6 time units 20 subjects

getSampleSizeSurvival 67

per time unit can be recruited, and after 10 time units 30 subjects per time unit
getSampleSizeSurvival(accrualTime = c(0, 6, 10), accrualIntensity = c(20, 30))

Specify accrual time as a list
at <- list(

"0 - <6" = 20,
"6 - Inf" = 30)

getSampleSizeSurvival(accrualTime = at, maxNumberOfSubjects = 200)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30)

getSampleSizeSurvival(accrualTime = at)

Specify effect size for a two-stage group design with O'Brien & Fleming boundaries
Effect size is based on event rates at specified event time
needs to be specified because it should be shown that hazard ratio < 1
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

pi1 = 0.2, pi2 = 0.3, eventTime = 24)

Effect size is based on event rate at specified event
time for the reference group and hazard ratio
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

hazardRatio = 0.5, pi2 = 0.3, eventTime = 24)

Effect size is based on hazard rate for the reference group and hazard ratio
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

hazardRatio = 0.5, lambda2 = 0.02)

Specification of piecewise exponential survival time and hazard ratios
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
hazardRatio = c(1.5, 1.8, 2))

Specification of piecewise exponential survival time as a list and hazard ratios
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2))

Specification of piecewise exponential survival time for both treatment arms
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015, 0.03, 0.06))

Specification of piecewise exponential survival time as a list
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2))

Specify effect size based on median survival times

68 getSimulationMeans

getSampleSizeSurvival(median1 = 5, median2 = 3)

Specify effect size based on median survival times of Weibull distribtion with
kappa = 2
getSampleSizeSurvival(median1 = 5, median2 = 3, kappa = 2)

Identify minimal and maximal required subjects to
reach the required events in spite of dropouts
getSampleSizeSurvival(accrualTime = c(0, 18), accrualIntensity = c(20, 30),

lambda2 = 0.4, lambda1 = 0.3, followUpTime = Inf, dropoutRate1 = 0.001,
dropoutRate2 = 0.005)

getSampleSizeSurvival(accrualTime = c(0, 18), accrualIntensity = c(20, 30),
lambda2 = 0.4, lambda1 = 0.3, followUpTime = 0, dropoutRate1 = 0.001,
dropoutRate2 = 0.005)

getSimulationMeans Get Simulation Means

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing means in a one or two treatment groups testing situation.

Usage

getSimulationMeans(
design = NULL,
...,
groups = 2L,
normalApproximation = TRUE,
meanRatio = FALSE,
thetaH0 = ifelse(meanRatio, 1, 0),
alternative = seq(0, 1, 0.2),
stDev = 1,
plannedSubjects = NA_real_,
directionUpper = TRUE,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
stDevH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
showStatistics = FALSE

)

getSimulationMeans 69

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. Default is TRUE, i.e., normally dis-
tributed test statistics are generated. If FALSE, the t test is used for calculating
the p-values, i.e., t distributed test statistics are generated.

meanRatio If TRUE, the design characteristics for one-sided testing of H0: mu1 / mu2 =
thetaH0 are simulated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

alternative The alternative hypothesis value for testing means. This can be a vector of
assumed alternatives, default is seq(0,1,0.2).

stDev The standard deviation under which the data is simulated, default is 1.
plannedSubjects

plannedSubjects is a vector of length kMax (the number of stages of the design)
that determines the number of cumulated (overall) subjects when the interim
stages are planned. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs, plannedSubjects refers to the number
of subjects per selected active arm.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing;
default is TRUE which means that larger values of the test statistics yield smaller
p-values.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the vector minNumberOfSubjectsPerStage
with length kMax determines the minimum number of subjects per stage (i.e.,
not cumulated), the first element is not taken into account. For two treatment
arms, it is the number of subjects for both treatment arms. For multi-arm designs
minNumberOfSubjectsPerStage refers to the minimum number of subjects per
selected active arm.

70 getSimulationMeans

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the vector maxNumberOfSubjectsPerStage
with length kMax determines the maximum number of subjects per stage (i.e.,
not cumulated), the first element is not taken into account. For two treatment
arms, it is the number of subjects for both treatment arms. For multi-arm designs
maxNumberOfSubjectsPerStage refers to the maximum number of subjects per
selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed.

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev.

maxNumberOfIterations

The number of simulation iterations, default is 1000.
seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power with specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

showStatistics If TRUE, summary statistics of the simulated data are displayed for the print
command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of subjects and parameter configuration. Additionally, an
allocation ratio = n1/n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfSubjectsPerStage,
and maxNumberOfSubjectsPerStage (or calcSubjectsFunction) are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on variables stage, meanRatio,
thetaH0, groups, plannedSubjects, sampleSizesPerStage, directionUpper, allocationRatioPlanned,
minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue,
thetaH1, and stDevH1. The function has to contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

getSimulationMeans 71

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median [range]; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

Example 1:
simulationResults <-getSimulationMeans(plannedSubjects = 40)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <-getSimulationMeans(plannedSubjects = 40)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData can be used to get the aggregated simulated data from the object as data.frame. The data
frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. alternative: The alternative hypothesis value.

4. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

5. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

6. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

7. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher’s combination test).

8. testStatisticsPerStage: The test statistic for each stage if only data from the considered
stage is taken into account.

9. effectEstimate: Overall simulated standardized effect estimate.

10. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

11. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1.

72 getSimulationMeans

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Fixed sample size design with two groups, total sample size 40,
alternative = c(0, 0.2, 0.4, 0.8, 1), and standard deviation = 1 (the default)
getSimulationMeans(plannedSubjects = 40, maxNumberOfIterations = 10)

Increase number of simulation iterations and compare results
with power calculator using normal approximation
getSimulationMeans(alternative = 0:4, stDev = 5,

plannedSubjects = 40, maxNumberOfIterations = 1000)
getPowerMeans(alternative = 0:4, stDev = 5,

maxNumberOfSubjects = 40, normalApproximation = TRUE)

Do the same for a three-stage O'Brien&Fleming inverse
normal group sequential design with non-binding futility stops
designIN <- getDesignInverseNormal(typeOfDesign = "OF", futilityBounds = c(0, 0))
x <- getSimulationMeans(designIN, alternative = c(0:4), stDev = 5,

plannedSubjects = c(20, 40, 60), maxNumberOfIterations = 1000)
getPowerMeans(designIN, alternative = 0:4, stDev = 5,

maxNumberOfSubjects = 60, normalApproximation = TRUE)

Assess power and average sample size if a sample size increase is foreseen
at conditional power 80% for each subsequent stage based on observed overall
effect and specified minNumberOfSubjectsPerStage and
maxNumberOfSubjectsPerStage
getSimulationMeans(designIN, alternative = 0:4, stDev = 5,

plannedSubjects = c(20, 40, 60),
minNumberOfSubjectsPerStage = c(NA, 20, 20),
maxNumberOfSubjectsPerStage = c(NA, 80, 80),
conditionalPower = 0.8,
maxNumberOfIterations = 50)

Do the same under the assumption that a sample size increase only takes
place at the first interim. The sample size for the third stage is set equal
to the second stage sample size.
mySampleSizeCalculationFunction <- function(..., stage,

minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage,
sampleSizesPerStage,
conditionalPower,
conditionalCriticalValue,
thetaH1) {

if (stage == 2) {
stageSubjects <- 4 * (max(0, conditionalCriticalValue +

stats::qnorm(conditionalPower)))^2 / (max(1e-12, thetaH1))^2
stageSubjects <- min(max(minNumberOfSubjectsPerStage[stage],

stageSubjects), maxNumberOfSubjectsPerStage[stage])
} else {

stageSubjects <- sampleSizesPerStage[stage - 1]

getSimulationMultiArmMeans 73

}
return(stageSubjects)

}
getSimulationMeans(designIN, alternative = 2:4, stDev = 5,

plannedSubjects = c(20, 40, 60),
minNumberOfSubjectsPerStage = c(NA, 20, 20),
maxNumberOfSubjectsPerStage = c(NA, 160, 160),
conditionalPower = 0.8,
calcSubjectsFunction = mySampleSizeCalculationFunction,
maxNumberOfIterations = 50)

getSimulationMultiArmMeans

Get Simulation Multi-Arm Means

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing means in a multi-arm treatment groups testing situation.

Usage

getSimulationMultiArmMeans(
design = NULL,
...,
activeArms = 3L,
effectMatrix = NULL,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
muMaxVector = seq(0, 1, 0.2),
gED50 = NA_real_,
slope = 1,
intersectionTest = c("Dunnett", "Bonferroni", "Simes", "Sidak", "Hierarchical"),
stDev = 1,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectDifference", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_integer_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
stDevH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,

74 getSimulationMultiArmMeans

selectArmsFunction = NULL,
showStatistics = TRUE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

activeArms The number of active treatment arms to be compared with control, default is 3.

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined". If "sigmoidEmax"
is selected, "gED50" and "slope" has to be entered to specify the ED50 and
the slope of the sigmoid Emax model. For "linear" and "sigmoidEmax",
"muMaxVector" specifies the range of effect sizes for the treatment group with
highest response. If "userDefined" is selected, "effectMatrix" has to be
entered.

muMaxVector Range of effect sizes for the treatment group with highest response for "linear"
and "sigmoidEmax" model, default is seq(0,1,0.2).

gED50 If "sigmoidEmax" is selected, "gED50" has to be entered to specify the ED50 of
the sigmoid Emax model.

slope If "sigmoidEmax" is selected, "slope" can be entered to specify the slope of
the sigmoid Emax model, default is 1.

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Five options are available: "Dunnett", "Bonferroni", "Simes",
"Sidak", and "Hierarchical", default is "Dunnett".

stDev The standard deviation under which the data is simulated, default is 1.

adaptations A vector of length kMax -1 indicating whether or not an adaptation takes place
at interim k, default is rep(TRUE,kMax -1).

typeOfSelection

The way the treatment arms are selected at interim. Five options are available:
"best", "rbest", "epsilon", "all", and "userDefined", default is "best".
For "rbest" (select the rValue best treatment arms), the parameter rValue
has to be specified, for "epsilon" (select treatment arm not worse than ep-
silon compared to the best), the parameter epsilonValue has to be specified. If
"userDefined" is selected, "selectArmsFunction" has to be specified.

effectMeasure Criterion for treatment arm selection, either based on test statistic ("testStatistic")
or effect difference ("effectDifference"), default is "effectDifference".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms, "atLeastOne" stops if at least one of the selected treatment
arms is shown to be superior to control at interim, default is "all".

getSimulationMultiArmMeans 75

epsilonValue For "epsilon" (select treatment arm not worse than epsilon compared to the
best), the parameter epsilonValue has to be specified.

rValue For "rbest" (select the rValue best treatment arms), the parameter rValue has
to be specified.

threshold Selection criterion: treatment arm is selected only if effectMeasure exceeds
threshold, default is -Inf. threshold can also be a vector of length activeArms
referring to a separate threshold condition over the treatment arms.

plannedSubjects

plannedSubjects is a vector of length kMax (the number of stages of the design)
that determines the number of cumulated (overall) subjects when the interim
stages are planned. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs, plannedSubjects refers to the number
of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the vector minNumberOfSubjectsPerStage
with length kMax determines the minimum number of subjects per stage (i.e.,
not cumulated), the first element is not taken into account. For two treatment
arms, it is the number of subjects for both treatment arms. For multi-arm designs
minNumberOfSubjectsPerStage refers to the minimum number of subjects per
selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the vector maxNumberOfSubjectsPerStage
with length kMax determines the maximum number of subjects per stage (i.e.,
not cumulated), the first element is not taken into account. For two treatment
arms, it is the number of subjects for both treatment arms. For multi-arm designs
maxNumberOfSubjectsPerStage refers to the maximum number of subjects per
selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed.

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev.

maxNumberOfIterations

The number of simulation iterations, default is 1000.

seed The seed to reproduce the simulation, default is a random seed.

76 getSimulationMultiArmMeans

calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power with specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment
arms are selected. This function has to depend on effectVector with length
activeArms (see examples).

showStatistics If TRUE, summary statistics of the simulated data are displayed for the print
command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 and/or stDevH1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedArms,
plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage,
conditionalPower, conditionalCriticalValue, overallEffects, and stDevH1. The function
has to contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

getSimulationMultiArmMeans 77

Examples

Assess a treatment-arm selection strategy with three active arms,
if the better of the arms is selected for the second stage, and
compare it with the no-selection case.
Assume a linear dose-response relationship
maxNumberOfIterations <- 100
designIN <- getDesignInverseNormal(typeOfDesign = "OF", kMax = 2)
sim <- getSimulationMultiArmMeans(design = designIN,

activeArms = 3, typeOfShape = "linear",
muMaxVector = seq(0,0.8,0.2),
intersectionTest = "Simes",
typeOfSelection = "best",
plannedSubjects = c(30,60),
maxNumberOfIterations = maxNumberOfIterations)

sim0 <- getSimulationMultiArmMeans(design = designIN,
activeArms = 3, typeOfShape = "linear",
muMaxVector = seq(0,0.8,0.2),
intersectionTest = "Simes",
typeOfSelection = "all",
plannedSubjects = c(30,60),
maxNumberOfIterations = maxNumberOfIterations)

sim$rejectAtLeastOne
sim$expectedNumberOfSubjects

sim0$rejectAtLeastOne
sim0$expectedNumberOfSubjects

Compare the power of the conditional Dunnett test with the power of the
combination test using Dunnett's intersection tests if no treatment arm
selection takes place. Asseume a linear dose-response relationship.
maxNumberOfIterations <- 100
designIN <- getDesignInverseNormal(typeOfDesign = "asUser",

userAlphaSpending = c(0, 0.025))
designCD <- getDesignConditionalDunnett(secondStageConditioning = TRUE)

index <- 1
for (design in c(designIN, designCD)) {

results <- getSimulationMultiArmMeans(design, activeArms = 3,
muMaxVector = seq(0, 1, 0.2), typeOfShape = "linear",
plannedSubjects = cumsum(rep(20, 2)),
intersectionTest = "Dunnett",
typeOfSelection = "all", maxNumberOfIterations = maxNumberOfIterations)

if (index == 1) {
drift <- results$effectMatrix[nrow(results$effectMatrix),]
plot(drift,results$rejectAtLeastOne, type = "l", lty = 1,

lwd = 3, col = "black", ylab = "Power")
} else {

lines(drift,results$rejectAtLeastOne, type = "l",
lty = index, lwd = 3, col = "red")

}
index <- index + 1

}
legend("topleft", legend=c("Combination Dunnett", "Conditional Dunnett"),

col=c("black", "red"), lty = (1:2), cex = 0.8)

78 getSimulationMultiArmRates

Assess the design characteristics of a user defined selection
strategy in a two-stage design using the inverse normal method
with constant bounds. Stopping for futility due to
de-selection of all treatment arms.
designIN <- getDesignInverseNormal(typeOfDesign = "P", kMax = 2)

mySelection <- function(effectVector) {
selectedArms <- (effectVector >= c(0, 0.1, 0.3))
return(selectedArms)

}

results <- getSimulationMultiArmMeans(designIN, activeArms = 3,
muMaxVector = seq(0, 1, 0.2),
typeOfShape = "linear",
plannedSubjects = c(30,60),
intersectionTest = "Dunnett",
typeOfSelection = "userDefined",
selectArmsFunction = mySelection,
maxNumberOfIterations = 100)

options(rpact.summary.output.size = "medium")
summary(results)
plot(results, type = c(5,3,9), grid = 4)

getSimulationMultiArmRates

Get Simulation Multi-Arm Rates

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing rates in a multi-arm treatment groups testing situation.

Usage

getSimulationMultiArmRates(
design = NULL,
...,
activeArms = 3L,
effectMatrix = NULL,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
piMaxVector = seq(0.2, 0.5, 0.1),
piControl = 0.2,
gED50 = NA_real_,
slope = 1,
intersectionTest = c("Dunnett", "Bonferroni", "Simes", "Sidak", "Hierarchical"),
directionUpper = TRUE,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectDifference", "testStatistic"),

getSimulationMultiArmRates 79

successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
piH1 = NA_real_,
piControlH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = TRUE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

activeArms The number of active treatment arms to be compared with control, default is 3.

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined". If "sigmoidEmax"
is selected, "gED50" and "slope" has to be entered to specify the ED50 and
the slope of the sigmoid Emax model. For "linear" and "sigmoidEmax",
"muMaxVector" specifies the range of effect sizes for the treatment group with
highest response. If "userDefined" is selected, "effectMatrix" has to be
entered.

piMaxVector Range of assumed probabilities for the treatment group with highest response
for "linear" and "sigmoidEmax" model, default is seq(0,1,0.2).

piControl If specified, the assumed probability in the control arm for simulation and under
which the sample size recalculation is performed.

gED50 If "sigmoidEmax" is selected, "gED50" has to be entered to specify the ED50 of
the sigmoid Emax model.

slope If "sigmoidEmax" is selected, "slope" can be entered to specify the slope of
the sigmoid Emax model, default is 1.

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Five options are available: "Dunnett", "Bonferroni", "Simes",
"Sidak", and "Hierarchical", default is "Dunnett".

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing;
default is TRUE which means that larger values of the test statistics yield smaller
p-values.

80 getSimulationMultiArmRates

adaptations A vector of length kMax -1 indicating whether or not an adaptation takes place
at interim k, default is rep(TRUE,kMax -1).

typeOfSelection

The way the treatment arms are selected at interim. Five options are available:
"best", "rbest", "epsilon", "all", and "userDefined", default is "best".
For "rbest" (select the rValue best treatment arms), the parameter rValue
has to be specified, for "epsilon" (select treatment arm not worse than ep-
silon compared to the best), the parameter epsilonValue has to be specified. If
"userDefined" is selected, "selectArmsFunction" has to be specified.

effectMeasure Criterion for treatment arm selection, either based on test statistic ("testStatistic")
or effect difference ("effectDifference"), default is "effectDifference".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms, "atLeastOne" stops if at least one of the selected treatment
arms is shown to be superior to control at interim, default is "all".

epsilonValue For "epsilon" (select treatment arm not worse than epsilon compared to the
best), the parameter epsilonValue has to be specified.

rValue For "rbest" (select the rValue best treatment arms), the parameter rValue has
to be specified.

threshold Selection criterion: treatment arm is selected only if effectMeasure exceeds
threshold, default is -Inf. threshold can also be a vector of length activeArms
referring to a separate threshold condition over the treatment arms.

plannedSubjects

plannedSubjects is a vector of length kMax (the number of stages of the design)
that determines the number of cumulated (overall) subjects when the interim
stages are planned. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs, plannedSubjects refers to the number
of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the vector minNumberOfSubjectsPerStage
with length kMax determines the minimum number of subjects per stage (i.e.,
not cumulated), the first element is not taken into account. For two treatment
arms, it is the number of subjects for both treatment arms. For multi-arm designs
minNumberOfSubjectsPerStage refers to the minimum number of subjects per
selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the vector maxNumberOfSubjectsPerStage
with length kMax determines the maximum number of subjects per stage (i.e.,
not cumulated), the first element is not taken into account. For two treatment
arms, it is the number of subjects for both treatment arms. For multi-arm designs
maxNumberOfSubjectsPerStage refers to the maximum number of subjects per
selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified

getSimulationMultiArmRates 81

conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

piH1 If specified, the assumed probability in the active treatment arm(s) under which
the sample size recalculation is performed.

piControlH1 If specified, the assumed probability in the reference group (if different from
piControl) for which the conditional power was calculated.

maxNumberOfIterations

The number of simulation iterations, default is 1000.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power with specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment
arms are selected. This function has to depend on effectVector with length
activeArms (see examples).

showStatistics If TRUE, summary statistics of the simulated data are displayed for the print
command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of pi1H1 and/or piControl makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedArms,
directionUpper, plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue, overallRates,
overallRatesControl, piH1, and piControlH1. The function has to contain the three-dots argu-
ment ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

82 getSimulationMultiArmSurvival

• plot to plot the object,
• as.data.frame to coerce the object to a data.frame,
• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Simulate the power of the combination test with two interim stages and
O'Brien & Fleming boundaries using Dunnett's intersection tests if the
best treatment arm is selected at first interim. Selection only take
place if a non-negative treatment effect is observed (threshold = 0);
20 subjects per stage and treatment arm, simulation is performed for
four parameter configurations.
maxNumberOfIterations <- 50
designIN <- getDesignInverseNormal(typeOfDesign = "OF")

effectMatrix <- matrix(c(0.2,0.2,0.2,
0.4,0.4,0.4,
0.4,0.5,0.5,
0.4,0.5,0.6),
byrow = TRUE, nrow = 4, ncol = 3)

x <- getSimulationMultiArmRates(design = designIN, typeOfShape = "userDefined",
effectMatrix = effectMatrix , piControl = 0.2,
typeOfSelection = "best", threshold = 0, intersectionTest = "Dunnett",
plannedSubjects = c(20, 40, 60),
maxNumberOfIterations = maxNumberOfIterations)

summary(x)

getSimulationMultiArmSurvival

Get Simulation Multi-Arm Survival

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing survival in a multi-arm treatment groups testing situation. In contrast to getSimulationSurvival()
(where survival times are simulated), normally distributed logrank test statistics are simulated.

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing survival in a multi-arm treatment groups testing situation. In contrast to getSimulationSurvival()
(where survival times are simulated), normally distributed logrank test statistics are simulated.

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing survival in a multi-arm treatment groups testing situation. In contrast to getSimulationSurvival()
(where survival times are simulated), normally distributed logrank test statistics are simulated.

getSimulationMultiArmSurvival 83

Usage

getSimulationMultiArmSurvival(
design = NULL,
...,
activeArms = 3L,
effectMatrix = NULL,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
omegaMaxVector = seq(1, 2.6, 0.4),
gED50 = NA_real_,
slope = 1,
intersectionTest = c("Dunnett", "Bonferroni", "Simes", "Sidak", "Hierarchical"),
directionUpper = TRUE,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectDifference", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedEvents = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfEventsPerStage = NA_real_,
maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcEventsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = TRUE

)

getSimulationMultiArmSurvival(
design = NULL,
...,
activeArms = 3L,
effectMatrix = NULL,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
omegaMaxVector = seq(1, 2.6, 0.4),
gED50 = NA_real_,
slope = 1,
intersectionTest = c("Dunnett", "Bonferroni", "Simes", "Sidak", "Hierarchical"),
directionUpper = TRUE,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectDifference", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedEvents = NA_real_,
allocationRatioPlanned = NA_real_,

84 getSimulationMultiArmSurvival

minNumberOfEventsPerStage = NA_real_,
maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcEventsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = TRUE

)

getSimulationMultiArmSurvival(
design = NULL,
...,
activeArms = 3L,
effectMatrix = NULL,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
omegaMaxVector = seq(1, 2.6, 0.4),
gED50 = NA_real_,
slope = 1,
intersectionTest = c("Dunnett", "Bonferroni", "Simes", "Sidak", "Hierarchical"),
directionUpper = TRUE,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectDifference", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedEvents = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfEventsPerStage = NA_real_,
maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcEventsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = TRUE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

activeArms The number of active treatment arms to be compared with control, default is 3.

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

getSimulationMultiArmSurvival 85

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined". If "sigmoidEmax"
is selected, "gED50" and "slope" has to be entered to specify the ED50 and
the slope of the sigmoid Emax model. For "linear" and "sigmoidEmax",
"muMaxVector" specifies the range of effect sizes for the treatment group with
highest response. If "userDefined" is selected, "effectMatrix" has to be
entered.

omegaMaxVector Range of hazard ratios with highest response for "linear" and "sigmoidEmax"
model, default is seq(1,2.6,0.4).

gED50 If "sigmoidEmax" is selected, "gED50" has to be entered to specify the ED50 of
the sigmoid Emax model.

slope If "sigmoidEmax" is selected, "slope" can be entered to specify the slope of
the sigmoid Emax model, default is 1.

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Five options are available: "Dunnett", "Bonferroni", "Simes",
"Sidak", and "Hierarchical", default is "Dunnett".

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing;
default is TRUE which means that larger values of the test statistics yield smaller
p-values.

adaptations A vector of length kMax -1 indicating whether or not an adaptation takes place
at interim k, default is rep(TRUE,kMax -1).

typeOfSelection

The way the treatment arms are selected at interim. Five options are available:
"best", "rbest", "epsilon", "all", and "userDefined", default is "best".
For "rbest" (select the rValue best treatment arms), the parameter rValue
has to be specified, for "epsilon" (select treatment arm not worse than ep-
silon compared to the best), the parameter epsilonValue has to be specified. If
"userDefined" is selected, "selectArmsFunction" has to be specified.

effectMeasure Criterion for treatment arm selection, either based on test statistic ("testStatistic")
or effect difference ("effectDifference"), default is "effectDifference".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms, "atLeastOne" stops if at least one of the selected treatment
arms is shown to be superior to control at interim, default is "all".

epsilonValue For "epsilon" (select treatment arm not worse than epsilon compared to the
best), the parameter epsilonValue has to be specified.

rValue For "rbest" (select the rValue best treatment arms), the parameter rValue has
to be specified.

threshold Selection criterion: treatment arm is selected only if effectMeasure exceeds
threshold, default is -Inf. threshold can also be a vector of length activeArms
referring to a separate threshold condition over the treatment arms.

plannedEvents plannedEvents is a vector of length kMax (the number of stages of the design)
that determines the number of cumulated (overall) events in survival designs
when the interim stages are planned. For two treatment arms, it is the number of
events for both treatment arms. For multi-arm designs, plannedEvents refers
to the overall number of events for the selected arms plus control.

86 getSimulationMultiArmSurvival

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

minNumberOfEventsPerStage

When performing a data driven sample size recalculation, the vector minNumberOfEventsPerStage
with length kMax determines the minimum number of events per stage (i.e., not
cumulated), the first element is not taken into account.

maxNumberOfEventsPerStage

When performing a data driven sample size recalculation, the vector maxNumberOfEventsPerStage
with length kMax determines the maximum number of events per stage (i.e., not
cumulated), the first element is not taken into account.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed.

maxNumberOfIterations

The number of simulation iterations, default is 1000.

seed The seed to reproduce the simulation, default is a random seed.
calcEventsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power with specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment
arms are selected. This function has to depend on effectVector with length
activeArms (see examples).

showStatistics If TRUE, summary statistics of the simulated data are displayed for the print
command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage (or calcEventsFunction) are defined.

calcEventsFunction
This function returns the number of events at given conditional power and conditional critical value
for specified testing situation. The function might depend on the variables stage, selectedArms,

getSimulationMultiArmSurvival 87

plannedEvents, directionUpper, allocationRatioPlanned, minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
conditionalPower, conditionalCriticalValue, and overallEffects. The function has to
contain the three-dots argument ’...’ (see examples).

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage (or calcEventsFunction) are defined.

calcEventsFunction
This function returns the number of events at given conditional power and conditional critical value
for specified testing situation. The function might depend on the variables stage, selectedArms,
plannedEvents, directionUpper, allocationRatioPlanned, minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
conditionalPower, conditionalCriticalValue, and overallEffects. The function has to
contain the three-dots argument ’...’ (see examples).

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage (or calcEventsFunction) are defined.

calcEventsFunction
This function returns the number of events at given conditional power and conditional critical value
for specified testing situation. The function might depend on the variables stage, selectedArms,
plannedEvents, directionUpper, allocationRatioPlanned, minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
conditionalPower, conditionalCriticalValue, and overallEffects. The function has to
contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

88 getSimulationMultiArmSurvival

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Assess different selection rules for a two-stage survival design with
O'Brien & Fleming alpha spending boundaries and (non-binding) stopping
for futility if the test statistic is negative.
Number of events at the second stage is adjusted based on conditional
power 80% and specified minimum and maximum number of Events.
maxNumberOfIterations <- 50
design <- getDesignInverseNormal(typeOfDesign = "asOF", futilityBounds = 0)

y1 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes", typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1, 2, 0.5), gED50 = 2, slope = 4,
typeOfSelection = "best", conditionalPower = 0.8,
minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = maxNumberOfIterations,
plannedEvents = c(75, 120))

y2 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes", typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1,2,0.5), gED50 = 2, slope = 4,
typeOfSelection = "epsilon", epsilonValue = 0.2,
effectMeasure = "effectDifference",
conditionalPower = 0.8, minNumberOfEventsPerStage = c(NA_real_, 30),

getSimulationMultiArmSurvival 89

maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = maxNumberOfIterations,
plannedEvents = c(75, 120))

y1$effectMatrix

y1$rejectAtLeastOne
y2$rejectAtLeastOne

y1$selectedArms
y2$selectedArms

Assess different selection rules for a two-stage survival design with
O'Brien & Fleming alpha spending boundaries and (non-binding) stopping
for futility if the test statistic is negative.
Number of events at the second stage is adjusted based on conditional
power 80% and specified minimum and maximum number of Events.
maxNumberOfIterations <- 50
design <- getDesignInverseNormal(typeOfDesign = "asOF", futilityBounds = 0)

y1 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes", typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1, 2, 0.5), gED50 = 2, slope = 4,
typeOfSelection = "best", conditionalPower = 0.8,
minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = maxNumberOfIterations,
plannedEvents = c(75, 120))

y2 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes", typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1,2,0.5), gED50 = 2, slope = 4,
typeOfSelection = "epsilon", epsilonValue = 0.2,
effectMeasure = "effectDifference",
conditionalPower = 0.8, minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = maxNumberOfIterations,
plannedEvents = c(75, 120))

y1$effectMatrix

y1$rejectAtLeastOne
y2$rejectAtLeastOne

y1$selectedArms
y2$selectedArms

Assess different selection rules for a two-stage survival design with
O'Brien & Fleming alpha spending boundaries and (non-binding) stopping
for futility if the test statistic is negative.
Number of events at the second stage is adjusted based on conditional
power 80% and specified minimum and maximum number of Events.
maxNumberOfIterations <- 50

90 getSimulationRates

design <- getDesignInverseNormal(typeOfDesign = "asOF", futilityBounds = 0)

y1 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes", typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1, 2, 0.5), gED50 = 2, slope = 4,
typeOfSelection = "best", conditionalPower = 0.8,
minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = maxNumberOfIterations,
plannedEvents = c(75, 120))

y2 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes", typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1,2,0.5), gED50 = 2, slope = 4,
typeOfSelection = "epsilon", epsilonValue = 0.2,
effectMeasure = "effectDifference",
conditionalPower = 0.8, minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = maxNumberOfIterations,
plannedEvents = c(75, 120))

y1$effectMatrix

y1$rejectAtLeastOne
y2$rejectAtLeastOne

y1$selectedArms
y2$selectedArms

getSimulationRates Get Simulation Rates

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing rates in a one or two treatment groups testing situation.

Usage

getSimulationRates(
design = NULL,
...,
groups = 2L,
normalApproximation = TRUE,
riskRatio = FALSE,
thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = seq(0.2, 0.5, 0.1),
pi2 = NA_real_,
plannedSubjects = NA_real_,
directionUpper = TRUE,
allocationRatioPlanned = NA_real_,

getSimulationRates 91

minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
pi1H1 = NA_real_,
pi2H1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. Default is FALSE for testing means (i.e.,
the t test is used) and TRUE for testing rates and the hazard ratio. For testing rates,
if normalApproximation = FALSE is specified, the binomial test (one sample)
or the exact test of Fisher (two samples) is used for calculating the p-values. In
the survival setting normalApproximation = FALSE has no effect.

riskRatio If TRUE, the design characteristics for one-sided testing of H0: pi1 / pi2 =
thetaH0 are simulated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

pi1 A numeric value or vector that represents the assumed probability in the active
treatment group if two treatment groups are considered, or the alternative prob-
ability for a one treatment group design, default is seq(0.2,0.5,0.1) (power
calculations and simulations) or seq(0.4,0.6,0.1) (sample size calculations).

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

plannedSubjects

plannedSubjects is a vector of length kMax (the number of stages of the design)
that determines the number of cumulated (overall) subjects when the interim

92 getSimulationRates

stages are planned. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs, plannedSubjects refers to the number
of subjects per selected active arm.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing;
default is TRUE which means that larger values of the test statistics yield smaller
p-values.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the vector minNumberOfSubjectsPerStage
with length kMax determines the minimum number of subjects per stage (i.e.,
not cumulated), the first element is not taken into account. For two treatment
arms, it is the number of subjects for both treatment arms. For multi-arm designs
minNumberOfSubjectsPerStage refers to the minimum number of subjects per
selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the vector maxNumberOfSubjectsPerStage
with length kMax determines the maximum number of subjects per stage (i.e.,
not cumulated), the first element is not taken into account. For two treatment
arms, it is the number of subjects for both treatment arms. For multi-arm designs
maxNumberOfSubjectsPerStage refers to the maximum number of subjects per
selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

pi1H1 If specified, the assumed probability in the active treatment group if two treat-
ment groups are considered, or the assumed probability for a one treatment
group design, for which the conditional power was calculated.

pi2H1 If specified, the assumed probability in the reference group if two treatment
groups are considered, for which the conditional power was calculated.

maxNumberOfIterations

The number of simulation iterations, default is 1000.

seed The seed to reproduce the simulation, default is a random seed.

calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power with specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

showStatistics If TRUE, summary statistics of the simulated data are displayed for the print
command, otherwise the output is suppressed, default is FALSE.

getSimulationRates 93

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of subjects and parameter configuration. Additionally, an
allocation ratio = n1/n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

The definition of pi1H1 and/or pi2H1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on variables stage, riskRatio,
thetaH0, groups, plannedSubjects, sampleSizesPerStage, directionUpper, allocationRatioPlanned,
minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue,
overallRate, farringtonManningValue1, and farringtonManningValue2. The function has to
contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median [range]; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

Example 1:
simulationResults <-getSimulationRates(plannedSubjects = 40)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <-getSimulationRates(plannedSubjects = 40)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData can be used to get the aggregated simulated data from the object as data.frame. The data
frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

94 getSimulationRates

2. stageNumber: The stage.

3. pi1: The assumed or derived event rate in the treatment group (if available).

4. pi2: The assumed or derived event rate in the control group (if available).

5. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

6. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

7. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

8. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher combination test)’

9. testStatisticsPerStage: The test statistic for each stage if only data from the considered
stage is taken into account.

10. overallRate1: The overall rate in treatment group 1.

11. overallRate2: The overall rate in treatment group 2.

12. stagewiseRates1: The stagewise rate in treatment group 1.

13. stagewiseRates2: The stagewise rate in treatment group 2.

14. sampleSizesPerStage1: The stagewise sample size in treatment group 1.

15. sampleSizesPerStage2: The stagewise sample size in treatment group 2.

16. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

17. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with pi1H1 and pi2H1.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Fixed sample size design (two groups) with total sample
size 120, pi1 = (0.3,0.4,0.5,0.6) and pi2 = 0.3
getSimulationRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = 120, maxNumberOfIterations = 10)

Increase number of simulation iterations and compare results with power calculator
getSimulationRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = 120, maxNumberOfIterations = 50)
getPowerRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, maxNumberOfSubjects = 120)

Do the same for a two-stage Pocock inverse normal group sequential
design with non-binding futility stops
designIN <- getDesignInverseNormal(typeOfDesign = "P", futilityBounds = c(0))
getSimulationRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = c(40, 80), maxNumberOfIterations = 50)
getPowerRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, maxNumberOfSubjects = 80)

getSimulationSurvival 95

Assess power and average sample size if a sample size reassessment is
foreseen at conditional power 80% for the subsequent stage (decrease and increase)
based on observed overall rates and specified minNumberOfSubjectsPerStage
and maxNumberOfSubjectsPerStage

Do the same under the assumption that a sample size increase only takes place
if the rate difference exceeds the value 0.1 at interim. For this, the sample
size recalculation method needs to be redefined:
mySampleSizeCalculationFunction <- function(..., stage,

plannedSubjects,
minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage,
conditionalPower,
conditionalCriticalValue,
overallRate) {

if (overallRate[1] - overallRate[2] < 0.1) {
return(plannedSubjects[stage] - plannedSubjects[stage - 1])

} else {
rateUnderH0 <- (overallRate[1] + overallRate[2]) / 2
stageSubjects <- 2 * (max(0, conditionalCriticalValue *

sqrt(2 * rateUnderH0 * (1 - rateUnderH0)) +
stats::qnorm(conditionalPower) * sqrt(overallRate[1] *
(1 - overallRate[1]) + overallRate[2] * (1 - overallRate[2]))))^2 /
(max(1e-12, (overallRate[1] - overallRate[2])))^2

stageSubjects <- ceiling(min(max(
minNumberOfSubjectsPerStage[stage],
stageSubjects), maxNumberOfSubjectsPerStage[stage]))

return(stageSubjects)
}

}
getSimulationRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = c(40, 80), minNumberOfSubjectsPerStage = c(40, 20),
maxNumberOfSubjectsPerStage = c(40, 160), conditionalPower = 0.8,
calcSubjectsFunction = mySampleSizeCalculationFunction, maxNumberOfIterations = 50)

getSimulationSurvival Get Simulation Survival

Description

Returns the analysis times, power, stopping probabilities, conditional power, and expected sample
size for testing the hazard ratio in a two treatment groups survival design.

Usage

getSimulationSurvival(
design = NULL,
...,
thetaH0 = 1,
directionUpper = TRUE,
pi1 = NA_real_,
pi2 = NA_real_,

96 getSimulationSurvival

lambda1 = NA_real_,
lambda2 = NA_real_,
median1 = NA_real_,
median2 = NA_real_,
hazardRatio = NA_real_,
kappa = 1,
piecewiseSurvivalTime = NA_real_,
allocation1 = 1,
allocation2 = 1,
eventTime = 12L,
accrualTime = c(0L, 12L),
accrualIntensity = 0.1,
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12L,
maxNumberOfSubjects = NA_real_,
plannedEvents = NA_real_,
minNumberOfEventsPerStage = NA_real_,
maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,
maxNumberOfRawDatasetsPerStage = 0,
longTimeSimulationAllowed = FALSE,
seed = NA_real_,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing;
default is TRUE which means that larger values of the test statistics yield smaller
p-values.

getSimulationSurvival 97

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2,0.5,0.1) (power calculations and simulations) or
seq(0.4,0.6,0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details).

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details).

median1 The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default.

kappa A numeric value >= 0. A kappa != 1 will be used for the specification of the
shape of the Weibull distribution. Default is 1, i.e., the exponential survival
distribution is used instead of the Weibull distribution. Note that the Weibull
distribution cannot be used for the piecewise definition of the survival time dis-
tribution, i.e., only lambda and kappa need to be specified. This function is
equivalent to pweibull(t,shape = kappa,scale = 1 / lambda) of the stats
package, i.e., the scale parameter is 1 / 'hazard rate'.
For example,
getPiecewiseExponentialDistribution(time = 130,piecewiseLambda = 0.01,kappa
= 4.2) and pweibull(q = 130,shape = 4.2,scale = 1 / 0.01) provide the sam-
ple result.

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime).

allocation1 The number how many subjects are assigned to treatment 1 in a subsequent
order, default is 1

allocation2 The number how many subjects are assigned to treatment 2 in a subsequent
order, default is 1

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time intervals for the study, default is c(0,12) (for details
see getAccrualTime).

accrualIntensity

A vector of accrual intensities, default is the relative intensity 0.1 (for details
see getAccrualTime).

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. If accrual time and accrual
intensity is specified, this will be calculated.

98 getSimulationSurvival

plannedEvents plannedEvents is a vector of length kMax (the number of stages of the design)
that determines the number of cumulated (overall) events in survival designs
when the interim stages are planned. For two treatment arms, it is the number of
events for both treatment arms. For multi-arm designs, plannedEvents refers
to the overall number of events for the selected arms plus control.

minNumberOfEventsPerStage

When performing a data driven sample size recalculation, the vector minNumberOfEventsPerStage
with length kMax determines the minimum number of events per stage (i.e., not
cumulated), the first element is not taken into account.

maxNumberOfEventsPerStage

When performing a data driven sample size recalculation, the vector maxNumberOfEventsPerStage
with length kMax determines the maximum number of events per stage (i.e., not
cumulated), the first element is not taken into account.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed.

maxNumberOfIterations

The number of simulation iterations, default is 1000.
maxNumberOfRawDatasetsPerStage

The number of raw datasets per stage that shall be extracted and saved as data.frame,
default is 0. getRawData can be used to get the extracted raw data from the ob-
ject.

longTimeSimulationAllowed

Logical that indicates whether long time simulations that consumes more than
30 seconds are allowed or not, default is FALSE.

seed The seed to reproduce the simulation, default is a random seed.

showStatistics If TRUE, summary statistics of the simulated data are displayed for the print
command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of events, number of subjects, and parameter configura-
tion. It also simulates the time when the required events are expected under the given assumptions
(exponentially, piecewise exponentially, or Weibull distributed survival times and constant or non-
constant piecewise accrual). Additionally, integers allocation1 and allocation2 can be specified
that determine the number allocated to treatment group 1 and treatment group 2, respectively.

piecewiseSurvivalTime
The first element of this vector must be equal to 0. piecewiseSurvivalTime can also be a list that
combines the definition of the time intervals and hazard rates in the reference group. The definition
of the survival time in the treatment group is obtained by the specification of the hazard ratio (see
examples for details).

getSimulationSurvival 99

conditionalPower
The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage are defined.

Note that numberOfSubjects, numberOfSubjects1, and numberOfSubjects2 in the output are
expected number of subjects.

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median [range]; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

Example 1:
simulationResults <-getSimulationSurvival(maxNumberOfSubjects = 100,plannedEvents
= 30)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <-getSimulationSurvival(maxNumberOfSubjects = 100,plannedEvents
= 30)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData can be used to get the aggregated simulated data from the object as data.frame. The data
frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. pi1: The assumed or derived event rate in the treatment group.

4. pi2: The assumed or derived event rate in the control group.

5. hazardRatio: The hazard ratio under consideration (if available).

6. analysisTime: The analysis time.

7. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

100 getSimulationSurvival

8. eventsPerStage1: The observed number of events per stage in treatment group 1.
9. eventsPerStage2: The observed number of events per stage in treatment group 2.

10. eventsPerStage: The observed number of events per stage in both treatment groups.
11. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.
12. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.
13. eventsNotAchieved: 1 if number of events could not be reached with observed number of

subjects, 0 otherwise.
14. testStatistic: The test statistic that is used for the test decision, depends on which design

was chosen (group sequential, inverse normal, or Fisher combination test)’
15. logRankStatistic: Z-score statistic which corresponds to a one-sided log-rank test at con-

sidered stage.
16. hazardRatioEstimateLR: The estimated hazard ratio, derived from the log-rank statistic.
17. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE

otherwise.
18. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for

selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1.

Raw Data

getRawData can be used to get the simulated raw data from the object as data.frame. Note that
getSimulationSurvival must called before with maxNumberOfRawDatasetsPerStage > 0. The
data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.
2. stopStage: The stage of stopping.
3. subjectId: The subject id (increasing number 1, 2, 3, ...)
4. accrualTime: The accrual time, i.e., the time when the subject entered the trial.
5. treatmentGroup: The treatment group number (1 or 2).
6. survivalTime: The survival time of the subject.
7. dropoutTime: The dropout time of the subject (may be NA).
8. observationTime: The specific observation time.
9. timeUnderObservation: The time under observation is defined as follows:

if (event == TRUE)
timeUnderObservation <- survivalTime;
else if (dropoutEvent == TRUE)
timeUnderObservation <- dropoutTime;
else
timeUnderObservation <- observationTime - accrualTime;

10. event: TRUE if an event occurred; FALSE otherwise.
11. dropoutEvent: TRUE if an dropout event occurred; FALSE otherwise.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

getSimulationSurvival 101

Examples

Fixed sample size with minimum required definitions, pi1 = (0.3,0.4,0.5,0.6) and
pi2 = 0.3 at event time 12, and accrual time 24
getSimulationSurvival(pi1 = seq(0.3,0.6,0.1), pi2 = 0.3, eventTime = 12,

accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 10)

Increase number of simulation iterations
getSimulationSurvival(pi1 = seq(0.3,0.6,0.1), pi2 = 0.3, eventTime = 12,

accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

Determine necessary accrual time with default settings if 200 subjects and
30 subjects per time unit can be recruited
getSimulationSurvival(plannedEvents = 40, accrualTime = 0,

accrualIntensity = 30, maxNumberOfSubjects = 200, maxNumberOfIterations = 50)

Determine necessary accrual time with default settings if 200 subjects and
if the first 6 time units 20 subjects per time unit can be recruited,
then 30 subjects per time unit
getSimulationSurvival(plannedEvents = 40, accrualTime = c(0, 6),

accrualIntensity = c(20, 30), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

Determine maximum number of Subjects with default settings if the first
6 time units 20 subjects per time unit can be recruited, and after
10 time units 30 subjects per time unit
getSimulationSurvival(plannedEvents = 40, accrualTime = c(0, 6, 10),

accrualIntensity = c(20, 30), maxNumberOfIterations = 50)

Specify accrual time as a list
at <- list(

"0 - <6" = 20,
"6 - Inf" = 30)

getSimulationSurvival(plannedEvents = 40, accrualTime = at,
maxNumberOfSubjects = 200, maxNumberOfIterations = 50)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30)

getSimulationSurvival(plannedEvents = 40, accrualTime = at, maxNumberOfIterations = 50)

Specify effect size for a two-stage group sequential design with
O'Brien & Fleming boundaries. Effect size is based on event rates
at specified event time, directionUpper = FALSE needs to be specified
because it should be shown that hazard ratio < 1
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

pi1 = 0.2, pi2 = 0.3, eventTime = 24, plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, directionUpper = FALSE, maxNumberOfIterations = 50)

As above, but with a three-stage O'Brien and Flemming design with
specified information rates, note that planned events consists of integer values
d3 <- getDesignGroupSequential(informationRates = c(0.4, 0.7, 1))
getSimulationSurvival(design = d3, pi1 = 0.2, pi2 = 0.3, eventTime = 24,

plannedEvents = round(d3$informationRates * 40),

102 getSimulationSurvival

maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50)

Effect size is based on event rate at specified event time for the reference
group and hazard ratio, directionUpper = FALSE needs to be specified because
it should be shown that hazard ratio < 1
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2), hazardRatio = 0.5,

pi2 = 0.3, eventTime = 24, plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
directionUpper = FALSE, maxNumberOfIterations = 50)

Effect size is based on hazard rate for the reference group and
hazard ratio, directionUpper = FALSE needs to be specified because
it should be shown that hazard ratio < 1
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

hazardRatio = 0.5, lambda2 = 0.02, plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50)

Specification of piecewise exponential survival time and hazard ratios,
note that in getSimulationSurvival only on hazard ratio is used
in the case that the survival time is piecewise expoential
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
hazardRatio = 1.5, plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

pws <- list(
"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5),
plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

Specification of piecewise exponential survival time for both treatment arms
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015, 0.03, 0.06), plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, maxNumberOfIterations = 50)

Specification of piecewise exponential survival time as a list,
note that in getSimulationSurvival only on hazard ratio
(not a vector) can be used
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = 1.5,
plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

Specification of piecewise exponential survival time and delayed effect
(response after 5 time units)
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),

getSimulationSurvival 103

lambda1 = c(0.01, 0.02, 0.06), plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, maxNumberOfIterations = 50)

Specify effect size based on median survival times
getSimulationSurvival(median1 = 5, median2 = 3, plannedEvents = 40,

maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50)

Specify effect size based on median survival
times of Weibull distribtion with kappa = 2
getSimulationSurvival(median1 = 5, median2 = 3, kappa = 2,

plannedEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE, maxNumberOfIterations = 50)

Perform recalculation of number of events based on conditional power for a
three-stage design with inverse normal combination test, where the conditional power
is calculated under the specified effect size thetaH1 = 1.3 and up to a four-fold
increase in originally planned sample size (number of events) is allowed
Note that the first value in minNumberOfEventsPerStage and
maxNumberOfEventsPerStage is arbitrary, i.e., it has no effect.
dIN <- getDesignInverseNormal(informationRates = c(0.4, 0.7, 1))

resultsWithSSR1 <- getSimulationSurvival(design = dIN,
hazardRatio = seq(1, 1.6, 0.1),
pi2 = 0.3, conditionalPower = 0.8, thetaH1 = 1.3,
plannedEvents = c(58, 102, 146),
minNumberOfEventsPerStage = c(NA, 44, 44),
maxNumberOfEventsPerStage = 4 * c(NA, 44, 44),
maxNumberOfSubjects = 800, maxNumberOfIterations = 50)

resultsWithSSR1

If thetaH1 is unspecified, the observed hazard ratio estimate
(calculated from the log-rank statistic) is used for performing the
recalculation of the number of events
resultsWithSSR2 <- getSimulationSurvival(design = dIN,

hazardRatio = seq(1, 1.6, 0.1),
pi2 = 0.3, conditionalPower = 0.8, plannedEvents = c(58, 102, 146),
minNumberOfEventsPerStage = c(NA, 44, 44),
maxNumberOfEventsPerStage = 4 * c(NA, 44, 44),
maxNumberOfSubjects = 800, maxNumberOfIterations = 50)

resultsWithSSR2

Compare it with design without event size recalculation
resultsWithoutSSR <- getSimulationSurvival(design = dIN,

hazardRatio = seq(1, 1.6, 0.1), pi2 = 0.3,
plannedEvents = c(58, 102, 145), maxNumberOfSubjects = 800,
maxNumberOfIterations = 50)

resultsWithoutSSR$overallReject
resultsWithSSR1$overallReject
resultsWithSSR2$overallReject

Confirm that event size racalcuation increases the Type I error rate,
i.e., you have to use the combination test
dGS <- getDesignGroupSequential(informationRates = c(0.4, 0.7, 1))
resultsWithSSRGS <- getSimulationSurvival(design = dGS, hazardRatio = seq(1),

pi2 = 0.3, conditionalPower = 0.8, plannedEvents = c(58, 102, 145),
minNumberOfEventsPerStage = c(NA, 44, 44),

104 getStageResults

maxNumberOfEventsPerStage = 4 * c(NA, 44, 44),
maxNumberOfSubjects = 800, maxNumberOfIterations = 50)

resultsWithSSRGS$overallReject

Set seed to get reproduceable results
identical(

getSimulationSurvival(plannedEvents = 40, maxNumberOfSubjects = 200,
seed = 99)$analysisTime,

getSimulationSurvival(plannedEvents = 40, maxNumberOfSubjects = 200,
seed = 99)$analysisTime

)

getStageResults Get Stage Results

Description

Returns summary statistics and p-values for a given data set and a given design.

Usage

getStageResults(design, dataInput, ..., stage = NA_integer_)

Arguments

design The trial design.
dataInput The summary data used for calculating the test results. This is either an element

of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset. For more information see getDataset.

... Further (optional) arguments to be passed:
thetaH0 The null hypothesis value, default is 0 for the normal and the binary

case (testing means and rates, respectively), it is 1 for the survival case (test-
ing the hazard ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is,
in case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2)
can be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified
for defining the null hypothesis H0: pi = thetaH0.

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.

getStageResults 105

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

directionUpper The direction of one-sided testing. Default is TRUE which
means that larger values of the test statistics yield smaller p-values.

intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple treatment arms. Five
options are available: "Dunnett", "Bonferroni", "Simes", "Sidak", and
"Hierarchical", default is "Dunnett".

varianceOption Defines the way to calculate the variance in multiple treat-
ment arms (> 2) for testing means. Three options are available: "overallPooled",
"pairwisePooled", and "notPooled", default is "overallPooled".

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

Calculates and returns the stage results of the specified design and data input at the specified stage.

Value

Returns a StageResults object.

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getTestActions()

Examples

design <- getDesignInverseNormal()
dataRates <- getDataset(

n1 = c(10, 10),
n2 = c(20, 20),
events1 = c(8, 10),

106 getTestActions

events2 = c(10, 16))
getStageResults(design, dataRates)

getTestActions Get Test Actions

Description

Returns test actions.

Usage

getTestActions(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults.

... Only available for backward compatibility.

Details

Returns the test actions of the specified design and stage results at the specified stage.

Value

Returns a character vector of length kMax Returns a numeric vector of length kMaxcontaining the
test actions of each stage.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults()

Examples

design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getTestActions(getStageResults(design, dataInput = data))

plot.AnalysisResults 107

plot.AnalysisResults Analysis Results Plotting

Description

Plots the conditional power together with the likelihood function.

Usage

S3 method for class 'AnalysisResults'
plot(
x,
y,
...,
type = 1L,
nPlanned = NA_real_,
allocationRatioPlanned = NA_real_,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
legendTitle = NA_character_,
palette = "Set1",
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1

)

Arguments

x The analysis results at given stage, obtained from getAnalysisResults.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. Furthermore the following arguments can be defined:

• thetaRange: A range of assumed effect sizes if testing means or a sur-
vival design was specified. Additionally, if testing means was selected,
assumedStDev (assumed standard deviation) can be specified (default is 1).

• piTreatmentRange: A range of assumed rates pi1 to calculate the condi-
tional power. Additionally, if a two-sample comparison was selected, pi2
can be specified (default is the value from getAnalysisResults).

• directionUpper: Specifies the direction of the alternative, only applicable
for one-sided testing; default is TRUE which means that larger values of the
test statistics yield smaller p-values.

• thetaH0: The null hypothesis value, default is 0 for the normal and the
binary case, it is 1 for the survival case. For testing a rate in one sample, a
value thetaH0 in (0, 1) has to be specified for defining the null hypothesis
H0: pi = thetaH0.

type The plot type (default = 1). Note that at the moment only one type (the condi-
tional power plot) is available.

108 plot.AnalysisResults

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is the
per-comparison (combined) sample size.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

main The main title, default is "Dataset".
xlab The x-axis label, default is "Stage".
ylab The y-axis label.
legendTitle The legend title, default is "".
palette The palette, default is "Set1".
legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find

a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with the base R plot function. Alternatively showSource can be defined
as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)
Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

Details

The conditional power is calculated only if effect size and sample size is specified.

plot.Dataset 109

Value

Returns a ggplot2 object.

Examples

design <- getDesignGroupSequential(kMax = 2)

dataExample <- getDataset(
n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)

result <- getAnalysisResults(design = design,
dataInput = dataExample, thetaH0 = 20,
nPlanned = c(30), thetaH1 = 1.5, stage = 1)

if (require(ggplot2)) plot(result, thetaRange = c(0, 100))

plot.Dataset Dataset Plotting

Description

Plots a dataset.

Usage

S3 method for class 'Dataset'
plot(
x,
y,
...,
main = "Dataset",
xlab = "Stage",
ylab = NA_character_,
legendTitle = "Group",
palette = "Set1",
showSource = FALSE

)

Arguments

x The Dataset object to plot.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title, default is "Dataset".

110 plot.Dataset

xlab The x-axis label, default is "Stage".

ylab The y-axis label.

legendTitle The legend title, default is "Group".

palette The palette, default is "Set1".

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with the base R plot function. Alternatively showSource can be defined
as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

Details

Generic function to plot all kinds of datasets.

Value

Returns a ggplot2 object.

Examples

Plot a dataset of means
dataExample <- getDataset(

n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3))

if (require(ggplot2)) plot(dataExample, main = "Comparison of Means")

Plot a dataset of rates
dataExample <- getDataset(

n1 = c(8, 10, 9, 11),
n2 = c(11, 13, 12, 13),
events1 = c(3, 5, 5, 6),
events2 = c(8, 10, 12, 12)

)

if (require(ggplot2)) plot(dataExample, main = "Comparison of Rates")

plot.EventProbabilities 111

plot.EventProbabilities

Event Probabilities Plotting

Description

Plots an object that inherits from class EventProbabilities.

Usage

S3 method for class 'EventProbabilities'
plot(
x,
y,
...,
allocationRatioPlanned = x$allocationRatioPlanned,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
legendTitle = NA_character_,
palette = "Set1",
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE

)

Arguments

x The object that inherits from EventProbabilities.

y An optional object that inherits from NumberOfSubjects.

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). Note that at the moment only one type is available.

legendTitle The legend title, default is "".

palette The palette, default is "Set1".
plotPointsEnabled

If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

112 plot.NumberOfSubjects

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with the base R plot function. Alternatively showSource can be defined
as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

Details

Generic function to plot an event probabilities object.

Generic function to plot a parameter set.

Value

Returns a ggplot2 object.

plot.NumberOfSubjects Number Of Subjects Plotting

Description

Plots an object that inherits from class NumberOfSubjects.

Usage

S3 method for class 'NumberOfSubjects'
plot(
x,
y,
...,
allocationRatioPlanned = NA_real_,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,

plot.NumberOfSubjects 113

type = 1L,
legendTitle = NA_character_,
palette = "Set1",
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE

)

Arguments

x The object that inherits from NumberOfSubjects.

y An optional object that inherits from EventProbabilities.

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. Will be ignored if y is undefined.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). Note that at the moment only one type is available.

legendTitle The legend title, default is "".

palette The palette, default is "Set1".
plotPointsEnabled

If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with the base R plot function. Alternatively showSource can be defined
as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

114 plot.ParameterSet

Details

Generic function to plot an "number of subjects" object.

Generic function to plot a parameter set.

Value

Returns a ggplot2 object.

plot.ParameterSet Parameter Set Plotting

Description

Plots an object that inherits from class ParameterSet.

Usage

S3 method for class 'ParameterSet'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
palette = "Set1",
legendPosition = NA_integer_,
showSource = FALSE

)

Arguments

x The object that inherits from ParameterSet.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1).

palette The palette, default is "Set1".

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position

plot.SimulationResults 115

• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with the base R plot function. Alternatively showSource can be defined
as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

Details

Generic function to plot a parameter set.

Generic function to plot a parameter set.

Value

Returns a ggplot2 object.

plot.SimulationResults

Simulation Results Plotting

Description

Plots simulation results.

Usage

S3 method for class 'SimulationResults'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
palette = "Set1",
theta = seq(-1, 1, 0.01),

116 plot.SimulationResults

plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1

)

Arguments

x The simulation results, obtained from
getSimulationSurvival.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Overall Success’ plot (multi-arm only)
• 2: creates a ’Success per Stage’ plot (multi-arm only)
• 3: creates a ’Selected Arms per Stage’ plot (multi-arm only)
• 4: creates a ’Reject per Stage’ or ’Rejected Arms per Stage’ plot
• 5: creates a ’Overall Power and Early Stopping’ plot
• 6: creates a ’Expected Number of Subjects and Power / Early Stop’ or

’Expected Number of Events and Power / Early Stop’ plot
• 7: creates an ’Overall Power’ plot
• 8: creates an ’Overall Early Stopping’ plot
• 9: creates an ’Expected Sample Size’ or ’Expected Number of Events’ plot
• 10: creates a ’Study Duration’ plot (non-multi-arm survival only)
• 11: creates an ’Expected Number of Subjects’ plot (non-multi-arm survival

only)
• 12: creates an ’Analysis Times’ plot (non-multi-arm survival only)
• 13: creates a ’Cumulative Distribution Function’ plot (non-multi-arm sur-

vival only)
• 14: creates a ’Survival Function’ plot (non-multi-arm survival only)
• "all": creates all available plots and returns it as a grid plot or list

palette The palette, default is "Set1".

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

plotPointsEnabled

If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot

plot.StageResults 117

• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with the base R plot function. Alternatively showSource can be defined
as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

Details

Generic function to plot all kinds of simulation results.

Value

Returns a ggplot2 object.

Examples

results <- getSimulationMeans(alternative = 0:4, stDev = 5,
plannedSubjects = 40, maxNumberOfIterations = 1000)

plot(results, type = 5)

plot.StageResults Stage Results Plotting

Description

Plots the conditional power together with the likelihood function.

118 plot.StageResults

Usage

S3 method for class 'StageResults'
plot(
x,
y,
...,
type = 1L,
nPlanned,
allocationRatioPlanned = 1,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
legendTitle = NA_character_,
palette = "Set1",
legendPosition = NA_integer_,
showSource = FALSE

)

Arguments

x The stage results at given stage, obtained from getStageResults or getAnalysisResults.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. Furthermore the following arguments can be defined:

• thetaRange: A range of assumed effect sizes if testing means or a sur-
vival design was specified. Additionally, if testing means was selected, an
assumed standard deviation can be specified (default is 1).

• piTreatmentRange: A range of assumed rates pi1 to calculate the condi-
tional power. Additionally, if a two-sample comparison was selected, pi2
can be specified (default is the value from getAnalysisResults).

• directionUpper: Specifies the direction of the alternative, only applicable
for one-sided testing; default is TRUE which means that larger values of the
test statistics yield smaller p-values.

• thetaH0: The null hypothesis value, default is 0 for the normal and the
binary case, it is 1 for the survival case. For testing a rate in one sample,
a value thetaH0 in (0,1) has to be specified for defining the null hypothesis
H0: pi = thetaH0.

type The plot type (default = 1). Note that at the moment only one type (the condi-
tional power plot) is available.

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is the
per-comparison (combined) sample size.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control.

main The main title.

plot.StageResults 119

xlab The x-axis label.

ylab The y-axis label.

legendTitle The legend title.

palette The palette, default is "Set1".

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with the base R plot function. Alternatively showSource can be defined
as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

Details

Generic function to plot all kinds of stage results. The conditional power is calculated only if effect
size and sample size is specified.

Value

Returns a ggplot2 object.

Examples

design <- getDesignGroupSequential(kMax = 4, alpha = 0.025,
informationRates = c(0.2, 0.5, 0.8, 1),
typeOfDesign = "WT", deltaWT = 0.25)

dataExample <- getDataset(
n = c(20, 30, 30),
means = c(50, 51, 55),
stDevs = c(130, 140, 120)

)

stageResults <- getStageResults(design, dataExample, thetaH0 = 20)

120 plot.TrialDesign

if (require(ggplot2)) plot(stageResults, nPlanned = c(30), thetaRange = c(0, 100))

plot.TrialDesign Trial Design Plotting

Description

Plots a trial design.

Usage

S3 method for class 'TrialDesign'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
palette = "Set1",
theta = seq(-1, 1, 0.01),
nMax = NA_integer_,
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1

)

Arguments

x The trial design, obtained from
getDesignGroupSequential,
getDesignInverseNormal or
getDesignFisher.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 3: creates a ’Stage Levels’ plot
• 4: creates a ’Error Spending’ plot
• 5: creates a ’Power and Early Stopping’ plot

plot.TrialDesign 121

• 6: creates an ’Average Sample Size and Power / Early Stop’ plot
• 7: creates an ’Power’ plot
• 8: creates an ’Early Stopping’ plot
• 9: creates an ’Average Sample Size’ plot
• "all": creates all available plots and returns it as a grid plot or list

palette The palette, default is "Set1".

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

nMax The maximum sample size.
plotPointsEnabled

If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with the base R plot function. Alternatively showSource can be defined
as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

Details

Generic function to plot a trial design.

Generic function to plot a trial design.

122 plot.TrialDesignPlan

Note that nMax is not an argument that it passed to ggplot2. Rather, the underlying calculations (e.g.
power for different theta’s or average sample size) are based on calls to function getPowerAndAverageSampleNumber
which has argument nMax. I.e. nMax is not an argument to ggplot2 but to getPowerAndAverageSampleNumber
which is called prior to plotting.

Value

Returns a ggplot2 object.

See Also

plot.TrialDesignSet to compare different designs or design parameters visual.

Examples

design <- getDesignInverseNormal(kMax = 3, alpha = 0.025,
typeOfDesign = "asKD", gammaA = 2,
informationRates = c(0.2, 0.7, 1),
typeBetaSpending = "bsOF")

if (require(ggplot2)) {
plot(design) # default: type = 1

}

plot.TrialDesignPlan Trial Design Plan Plotting

Description

Plots a trial design plan.

Usage

S3 method for class 'TrialDesignPlan'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = ifelse(x$.design$kMax == 1, 5L, 1L),
palette = "Set1",
theta = seq(-1, 1, 0.01),
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1

)

plot.TrialDesignPlan 123

Arguments

x The trial design plan, obtained from
getSampleSizeMeans,
getSampleSizeRates,
getSampleSizeSurvival,
getPowerMeans,
getPowerRates or
getPowerSurvival.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 2: creates a ’Boundaries Effect Scale’ plot
• 3: creates a ’Boundaries p Values Scale’ plot
• 4: creates a ’Error Spending’ plot
• 5: creates a ’Sample Size’ or ’Overall Power and Early Stopping’ plot
• 6: creates a ’Number of Events’ or ’Sample Size’ plot
• 7: creates an ’Overall Power’ plot
• 8: creates an ’Overall Early Stopping’ plot
• 9: creates an ’Expected Number of Events’ or ’Expected Sample Size’ plot
• 10: creates a ’Study Duration’ plot
• 11: creates an ’Expected Number of Subjects’ plot
• 12: creates an ’Analysis Times’ plot
• 13: creates a ’Cumulative Distribution Function’ plot
• 14: creates a ’Survival Function’ plot
• "all": creates all available plots and returns it as a grid plot or list

palette The palette, default is "Set1".

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

plotPointsEnabled

If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom

124 plot.TrialDesignSet

• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with the base R plot function. Alternatively showSource can be defined
as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

Details

Generic function to plot all kinds of trial design plans.

Value

Returns a ggplot2 object.

Examples

if (require(ggplot2)) plot(getSampleSizeMeans())

plot.TrialDesignSet Trial Design Set Plotting

Description

Plots a trial design set.

Usage

S3 method for class 'TrialDesignSet'
plot(
x,
y,
...,

plot.TrialDesignSet 125

type = 1L,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
palette = "Set1",
theta = seq(-1, 1, 0.02),
nMax = NA_integer_,
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1

)

Arguments

x The trial design set, obtained from getDesignSet.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 3: creates a ’Stage Levels’ plot
• 4: creates a ’Error Spending’ plot
• 5: creates a ’Power and Early Stopping’ plot
• 6: creates an ’Average Sample Size and Power / Early Stop’ plot
• 7: creates an ’Power’ plot
• 8: creates an ’Early Stopping’ plot
• 9: creates an ’Average Sample Size’ plot
• "all": creates all available plots and returns it as a grid plot or list

main The main title.

xlab The x-axis label.

ylab The y-axis label.

palette The palette, default is "Set1".

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

nMax The maximum sample size.
plotPointsEnabled

If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center

126 plot.TrialDesignSet

• 3: legend position left bottom

• 4: legend position right top

• 5: legend position right center

• 6: legend position right bottom

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with the base R plot function. Alternatively showSource can be defined
as one of the following character values:

• "commands": returns a character vector with plot commands

• "axes": returns a list with the axes definitions

• "test": all plot commands will be validated with eval(parse()) and re-
turned as character vector (function does not stop if an error occurs)

• "validate": all plot commands will be validated with eval(parse()) and
returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

Details

Generic function to plot a trial design set. Is, e.g., useful to compare different designs or design
parameters visual.

Value

Returns a ggplot2 object.

Examples

design <- getDesignInverseNormal(kMax = 3, alpha = 0.025,
typeOfDesign = "asKD", gammaA = 2,
informationRates = c(0.2, 0.7, 1), typeBetaSpending = "bsOF")

Create a set of designs based on the master design defined above
and varied parameter 'gammaA'
designSet <- getDesignSet(design = design, gammaA = 4)

if (require(ggplot2)) plot(designSet, type = 1, legendPosition = 6)

plotTypes 127

plotTypes Get Available Plot Types

Description

Function to identify the available plot types of an object.

Usage

plotTypes(
obj,
output = c("numeric", "caption", "numcap", "capnum"),
numberInCaptionEnabled = FALSE

)

getAvailablePlotTypes(
obj,
output = c("numeric", "caption", "numcap", "capnum"),
numberInCaptionEnabled = FALSE

)

Arguments

obj The object for which the plot types shall be identified, e.g. produced by getDesignGroupSequential
or getSampleSizeMeans.

output The output type. Can be one of c("numeric","caption","numcap","capnum").
numberInCaptionEnabled

If TRUE, the number will be added to the caption, default is FALSE.

Details

plotTypes and getAvailablePlotTypes are equivalent, i.e., plotTypes is a short form of getAvailablePlotTypes.

output:

1. numeric: numeric output
2. caption: caption as character output
3. numcap: list with number and caption
4. capnum: list with caption and number

Value

Depending on how the output is specified, a numeric vector, a character vector, or a list will be
returned.

Examples

design <- getDesignInverseNormal(kMax = 2)
getAvailablePlotTypes(design, "numeric")
plotTypes(design, "caption")
getAvailablePlotTypes(design, "numcap")
plotTypes(design, "capnum")

128 readDataset

readDataset Read Dataset

Description

Reads a data file and returns it as dataset object.

Usage

readDataset(
file,
...,
header = TRUE,
sep = ",",
quote = "\"",
dec = ".",
fill = TRUE,
comment.char = "",
fileEncoding = "UTF-8"

)

Arguments

file A CSV file (see read.table).

... Further arguments to be passed to coderead.table.

header A logical value indicating whether the file contains the names of the variables
as its first line.

sep The field separator character. Values on each line of the file are separated by this
character. If sep = "," (the default for readDataset) the separator is a comma.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

dec The character used in the file for decimal points.

fill logical. If TRUE then in case the rows have unequal length, blank fields are
implicitly added.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

fileEncoding character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

readDataset is a wrapper function that uses read.table to read the CSV file into a data frame,
transfers it from long to wide format with reshape and puts the data to getDataset.

readDataset 129

Value

Returns a Dataset object. The following generics (R generic functions) are available for this result
object:

• names to obtain the field names,

• print to print the object,

• summary to display a summary of the object,

• plot to plot the object,

• as.data.frame to coerce the object to a data.frame,

• as.matrix to coerce the object to a matrix.

See Also

• readDatasets for reading multiple datasets,

• writeDataset for writing a single dataset,

• writeDatasets for writing multiple datasets.

Examples

dataFileRates <- system.file("extdata",
"dataset_rates.csv", package = "rpact")

if (dataFileRates != "") {
datasetRates <- readDataset(dataFileRates)
datasetRates

}

dataFileMeansMultiArm <- system.file("extdata",
"dataset_means_multi-arm.csv", package = "rpact")

if (dataFileMeansMultiArm != "") {
datasetMeansMultiArm <- readDataset(dataFileMeansMultiArm)
datasetMeansMultiArm

}

dataFileRatesMultiArm <- system.file("extdata",
"dataset_rates_multi-arm.csv", package = "rpact")

if (dataFileRatesMultiArm != "") {
datasetRatesMultiArm <- readDataset(dataFileRatesMultiArm)
datasetRatesMultiArm

}

dataFileSurvivalMultiArm <- system.file("extdata",
"dataset_survival_multi-arm.csv", package = "rpact")

if (dataFileSurvivalMultiArm != "") {
datasetSurvivalMultiArm <- readDataset(dataFileSurvivalMultiArm)
datasetSurvivalMultiArm

}

130 readDatasets

readDatasets Read Multiple Datasets

Description

Reads a data file and returns it as a list of dataset objects.

Usage

readDatasets(
file,
...,
header = TRUE,
sep = ",",
quote = "\"",
dec = ".",
fill = TRUE,
comment.char = "",
fileEncoding = "UTF-8"

)

Arguments

file A CSV file (see read.table).

... Further arguments to be passed to read.table.

header A logical value indicating whether the file contains the names of the variables
as its first line.

sep The field separator character. Values on each line of the file are separated by this
character. If sep = "," (the default for readDatasets) the separator is a comma.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

dec The character used in the file for decimal points.

fill logical. If TRUE then in case the rows have unequal length, blank fields are
implicitly added.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

fileEncoding character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

Reads a file that was written by writeDatasets before.

Value

Returns a list of Dataset objects.

rpact 131

See Also

• readDataset for reading a single dataset,

• writeDatasets for writing multiple datasets,

• writeDataset for writing a single dataset.

Examples

dataFile <- system.file("extdata", "datasets_rates.csv", package = "rpact")
if (dataFile != "") {

datasets <- readDatasets(dataFile)
datasets

}

rpact rpact - Confirmatory Adaptive Clinical Trial Design and Analysis

Description

rpact (R Package for Adaptive Clinical Trials) is a comprehensive package that enables the design
and analysis of confirmatory adaptive group sequential designs. Particularly, the methods described
in the recent monograph by Wassmer and Brannath (published by Springer, 2016) are implemented.
It also comprises advanced methods for sample size calculations for fixed sample size designs incl.,
e.g., sample size calculation for survival trials with piecewise exponentially distributed survival
times and staggered patients entry.

Details

rpact includes the classical group sequential designs (incl. user spending function approaches)
where the sample sizes per stage (or the time points of interim analysis) cannot be changed in a
data-driven way. Confirmatory adaptive designs explicitly allow for this under control of the Type I
error rate. They are either based on the combination testing or the conditional rejection probability
(CRP) principle. Both are available, for the former the inverse normal combination test and Fisher’s
combination test can be used.

Specific techniques of the adaptive methodology are also available, e.g., overall confidence in-
tervals, overall p-values, and conditional and predictive power assessments. Simulations can be
performed to assess the design characteristics of a (user-defined) sample size recalculation strategy.
Designs are available for trials with continuous, binary, and survival endpoint.

For more information please visit www.rpact.org. If you are interested in professional services
round about the package or need a comprehensive validation documentation to fulfill regulatory
requirements please visit www.rpact.com.

rpact is developed by

• Gernot Wassmer (<gernot.wassmer@rpact.com>) and

• Friedrich Pahlke (<friedrich.pahlke@rpact.com>).

Author(s)

Gernot Wassmer, Friedrich Pahlke

https://doi.org/10.1007/978-3-319-32562-0
https://www.rpact.org
https://www.rpact.com

132 setOutputFormat

References

Wassmer, G., Brannath, W. (2016) Group Sequential and Confirmatory Adaptive Designs in Clinical
Trials (Springer Series in Pharmaceutical Statistics) <doi:10.1007/978-3-319-32562-0>

See Also

Useful links:

• https://www.rpact.org

• Report bugs at https://www.rpact.org/bugreport

setOutputFormat Set Output Format

Description

With this function the format of the standard outputs of all rpact objects can be changed and set
user defined respectively.

Usage

setOutputFormat(
parameterName = NA_character_,
...,
digits = NA_integer_,
nsmall = NA_integer_,
trimSingleZeroes = NA,
futilityProbabilityEnabled = NA,
file = NA_character_,
resetToDefault = FALSE,
roundFunction = NA_character_

)

Arguments

parameterName The name of the parameter whose output format shall be edited. Leave the
default NA_character_ if the output format of all parameters shall be edited.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

digits How many significant digits are to be used for a numeric value. The default,
NULL, uses getOption("digits"). Allowed values are 0 <= digits <= 20.

nsmall The minimum number of digits to the right of the decimal point in formatting
real numbers in non-scientific formats. Allowed values are 0 <= nsmall <= 20.

trimSingleZeroes

If TRUE zero values will be trimmed in the output, e.g., "0.00" will displayed as
"0"

futilityProbabilityEnabled

If TRUE very small value (< 1e-09) will be displayed as "0", default is FALSE.

file An optional file name of an existing text file that contains output format defini-
tions (see Details for more information).

https://doi.org/10.1007/978-3-319-32562-0
https://www.rpact.org
https://www.rpact.org/bugreport

setOutputFormat 133

resetToDefault If TRUE all output formats will be reset to default value. Note that other settings
will be executed afterwards if specified, default is FALSE.

roundFunction A character value that specifies the R base round function to use, default is
NA_character_. Allowed values are "ceiling", "floor", "trunc", "round", "sig-
nif", and NA_character_.

Details

Output formats can be written to a text file (see getOutputFormat). To load your personal out-
put formats read a formerly saved file at the beginning of your work with rpact, e.g. execute
setOutputFormat(file = "my_rpact_output_formats.txt").

Note that the parameterName must not match exactly, e.g., for p-values the following parameter
names will be recognized amongst others:

1. p value

2. p.values

3. p-value

4. pValue

5. rpact.output.format.p.value

See Also

format for details on the internal used funtion to format the values.

Other output formats: getOutputFormat()

Examples

show output format of p values
getOutputFormat("p.value")

set new p value output format
setOutputFormat("p.value", digits = 5, nsmall = 5)

show sample sizes as smallest integers not less than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "ceiling")
getSampleSizeMeans()

show sample sizes as smallest integers not greater than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "floor")
getSampleSizeMeans()

set new sample size output format without round function
setOutputFormat("sample size", digits = 2, nsmall = 2)
getSampleSizeMeans()

reset sample size output format to default
setOutputFormat("sample size")
getSampleSizeMeans()
getOutputFormat("sample size")

write current output format definitions to file
getOutputFormat(file = "rpact_options.txt")

write default output format definitions to file

134 testPackage

getOutputFormat(file = "rpact_options.txt", default = TRUE)

load and set output format definitions from file
setOutputFormat(file = "rpact_options.txt")

testPackage Test Package

Description

This function allows the installed package rpact to be tested.

Usage

testPackage(
outDir = ".",
...,
completeUnitTestSetEnabled = TRUE,
types = "tests",
sourceDirectory = NULL

)

Arguments

outDir The output directory where all test results shall be saved. By default the current
working directory is used.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

completeUnitTestSetEnabled

If TRUE (default) all existing unit tests will be executed; a subset of all unit tests
will be used otherwise.

types The type(s) of tests to be done. Can be one or more of c("tests","examples","vignettes"),
default is "tests" only.

sourceDirectory

An optional directory to look for .save files.

Details

This function creates the subdirectory rpact-tests in the specified output directory and copies all
unit test files of the package to this newly created directory. Then the function runs all tests (or
a subset of all tests if completeUnitTestSetEnabled is FALSE) using testInstalledPackage.
The test results will be saved to the text file testthat.Rout that can be found in the subdirectory
rpact-tests.

Value

The value of completeUnitTestSetEnabled will be returned invisible.

utilitiesForPiecewiseExponentialDistribution 135

Examples

Not run:
testPackage()

End(Not run)

utilitiesForPiecewiseExponentialDistribution

The Piecewise Exponential Distribution

Description

Distribution function, quantile function and random number generation for the piecewise exponen-
tial distribution.

Usage

getPiecewiseExponentialDistribution(
time,
...,
piecewiseSurvivalTime = NA_real_,
piecewiseLambda = NA_real_,
kappa = 1

)

ppwexp(t, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

getPiecewiseExponentialQuantile(
quantile,
...,
piecewiseSurvivalTime = NA_real_,
piecewiseLambda = NA_real_,
kappa = 1

)

qpwexp(q, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

getPiecewiseExponentialRandomNumbers(
n,
...,
piecewiseSurvivalTime = NA_real_,
piecewiseLambda = NA_real_,
kappa = 1

)

rpwexp(n, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

136 utilitiesForPiecewiseExponentialDistribution

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kappa A numeric value >= 0. A kappa != 1 will be used for the specification of the
shape of the Weibull distribution. Default is 1, i.e., the exponential survival
distribution is used instead of the Weibull distribution. Note that the Weibull
distribution cannot be used for the piecewise definition of the survival time dis-
tribution, i.e., only lambda and kappa need to be specified. This function is
equivalent to pweibull(t,shape = kappa,scale = 1 / lambda) of the stats
package, i.e., the scale parameter is 1 / 'hazard rate'.
For example,
getPiecewiseExponentialDistribution(time = 130,piecewiseLambda = 0.01,kappa
= 4.2) and pweibull(q = 130,shape = 4.2,scale = 1 / 0.01) provide the sam-
ple result.

t, time Vector of time values.
s, piecewiseSurvivalTime

Vector of start times defining the "time pieces".
lambda, piecewiseLambda

Vector of lambda values (hazard rates) corresponding to the start times.

q, quantile Vector of quantiles.

n Number of observations.

Details

getPiecewiseExponentialDistribution (short: ppwexp), getPiecewiseExponentialQuantile
(short: qpwexp), and getPiecewiseExponentialRandomNumbers (short: rpwexp) provide proba-
bilities, quantiles, and random numbers according to a piecewise exponential or a Weibull distribu-
tion. The piecewise definition is performed through a vector of starting times (piecewiseSurvivalTime)
and a vector of hazard rates (piecewiseLambda). You can also use a list that defines the starting
times and piecewise lambdas together and define piecewiseSurvivalTime as this list. The list needs
to have the form, e.g., #’ piecewiseSurvivalTime <- list("0 - <6" = 0.025, "6 - <9" = 0.04, "9 - <15"
= 0.015, ">=15" = 0.007) For the Weibull case, you can also specify a shape parameter kappa in
order to calculated probabilities, quantiles, or random numbers. In this case, no piecewise definition
is possible, i.e., only piecewiseLambda and kappa need to be specified.

Value

Returns a numeric value or vector will be returned.

Examples

Calculate probabilties for a range of time values for a
piecewise exponential distribution with hazard rates
0.025, 0.04, 0.015, and 0.007 in the intervals
[0, 6), [6, 9), [9, 15), [15, Inf), respectively,
and re-return the time values:
piecewiseSurvivalTime <- list(

"0 - <6" = 0.025,
"6 - <9" = 0.04,
"9 - <15" = 0.015,
">=15" = 0.01)

y <- getPiecewiseExponentialDistribution(seq(0, 150, 15),

utilitiesForSurvivalTrials 137

piecewiseSurvivalTime = piecewiseSurvivalTime)
getPiecewiseExponentialQuantile(y,

piecewiseSurvivalTime = piecewiseSurvivalTime)

utilitiesForSurvivalTrials

Survival Helper Functions for Conversion of Pi, Lambda, Median

Description

Functions to convert pi, lambda and median values into each other.

Usage

getLambdaByPi(piValue, eventTime = 12L, kappa = 1)

getLambdaByMedian(median, kappa = 1)

getHazardRatioByPi(pi1, pi2, eventTime = 12L, kappa = 1)

getPiByLambda(lambda, eventTime = 12L, kappa = 1)

getPiByMedian(median, eventTime = 12L, kappa = 1)

getMedianByLambda(lambda, kappa = 1)

getMedianByPi(piValue, eventTime = 12L, kappa = 1)

Arguments

piValue, pi1, pi2, lambda, median

Value that shall be converted.

eventTime The assumed time under which the event rates are calculated, default is 12.

kappa A numeric value >= 0. A kappa != 1 will be used for the specification of the
shape of the Weibull distribution. Default is 1, i.e., the exponential survival
distribution is used instead of the Weibull distribution. Note that the Weibull
distribution cannot be used for the piecewise definition of the survival time dis-
tribution, i.e., only lambda and kappa need to be specified. This function is
equivalent to pweibull(t,shape = kappa,scale = 1 / lambda) of the stats
package, i.e., the scale parameter is 1 / 'hazard rate'.
For example,
getPiecewiseExponentialDistribution(time = 130,piecewiseLambda = 0.01,kappa
= 4.2) and pweibull(q = 130,shape = 4.2,scale = 1 / 0.01) provide the sam-
ple result.

Details

Can be used, e.g., to convert median values into pi or lambda values for usage in getSampleSizeSurvival
or getPowerSurvival.

138 writeDataset

Value

Returns a numeric value or vector will be returned.

writeDataset Write Dataset

Description

Writes a dataset to a CSV file.

Usage

writeDataset(
dataset,
file,
...,
append = FALSE,
quote = TRUE,
sep = ",",
eol = "\n",
na = "NA",
dec = ".",
row.names = TRUE,
col.names = NA,
qmethod = "double",
fileEncoding = "UTF-8"

)

Arguments

dataset A dataset.

file The target CSV file.

... Further arguments to be passed to write.table.

append Logical. Only relevant if file is a character string. If TRUE, the output is appended
to the file. If FALSE, any existing file of the name is destroyed.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

sep The field separator character. Values on each line of the file are separated by this
character. If sep = "," (the default for writeDataset) the separator is a comma.

eol The character(s) to print at the end of each line (row).

na The string to use for missing values in the data.

dec The character used in the file for decimal points.

row.names Either a logical value indicating whether the row names of dataset are to be
written along with dataset, or a character vector of row names to be written.

writeDatasets 139

col.names Either a logical value indicating whether the column names of dataset are to
be written along with dataset, or a character vector of column names to be
written. See the section on ’CSV files’ for the meaning of col.names = NA.

qmethod A character string specifying how to deal with embedded double quote charac-
ters when quoting strings. Must be one of "double" (default in writeDataset)
or "escape".

fileEncoding Character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

writeDataset is a wrapper function that coerces the dataset to a data frame and uses
write.table to write it to a CSV file.

See Also

• writeDatasets for writing multiple datasets,

• readDataset for reading a single dataset,

• readDatasets for reading multiple datasets.

Examples

Not run:
datasetOfRates <- getDataset(

n1 = c(11, 13, 12, 13),
n2 = c(8, 10, 9, 11),
events1 = c(10, 10, 12, 12),
events2 = c(3, 5, 5, 6)

)
writeDataset(datasetOfRates, "dataset_rates.csv")

End(Not run)

writeDatasets Write Multiple Datasets

Description

Writes a list of datasets to a CSV file.

Usage

writeDatasets(
datasets,
file,
...,
append = FALSE,
quote = TRUE,
sep = ",",

140 writeDatasets

eol = "\n",
na = "NA",
dec = ".",
row.names = TRUE,
col.names = NA,
qmethod = "double",
fileEncoding = "UTF-8"

)

Arguments

datasets A list of datasets.

file The target CSV file.

... Further arguments to be passed to write.table.

append Logical. Only relevant if file is a character string. If TRUE, the output is appended
to the file. If FALSE, any existing file of the name is destroyed.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

sep The field separator character. Values on each line of the file are separated by
this character. If sep = "," (the default for writeDatasets) the separator is a
comma.

eol The character(s) to print at the end of each line (row).

na The string to use for missing values in the data.

dec The character used in the file for decimal points.

row.names Either a logical value indicating whether the row names of dataset are to be
written along with dataset, or a character vector of row names to be written.

col.names Either a logical value indicating whether the column names of dataset are to
be written along with dataset, or a character vector of column names to be
written. See the section on ’CSV files’ for the meaning of col.names = NA.

qmethod A character string specifying how to deal with embedded double quote charac-
ters when quoting strings. Must be one of "double" (default in writeDatasets)
or "escape".

fileEncoding Character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

The format of the CSV file is optimized for usage of readDatasets.

See Also

• writeDataset for writing a single dataset,

• readDatasets for reading multiple datasets,

• readDataset for reading a single dataset.

writeDatasets 141

Examples

Not run:
d1 <- getDataset(

n1 = c(11, 13, 12, 13),
n2 = c(8, 10, 9, 11),
events1 = c(10, 10, 12, 12),
events2 = c(3, 5, 5, 6)

)
d2 <- getDataset(

n1 = c(9, 13, 12, 13),
n2 = c(6, 10, 9, 11),
events1 = c(10, 10, 12, 12),
events2 = c(4, 5, 5, 6)

)
datasets <- list(d1, d2)
writeDatasets(datasets, "datasets_rates.csv")

End(Not run)

Index

∗ analysis functions
getAnalysisResults, 6
getClosedCombinationTestResults,

10
getClosedConditionalDunnettTestResults,

11
getConditionalPower, 13
getConditionalRejectionProbabilities,

15
getFinalConfidenceInterval, 34
getFinalPValue, 36
getRepeatedConfidenceIntervals, 55
getRepeatedPValues, 57
getStageResults, 104
getTestActions, 106

∗ design functions
getDesignCharacteristics, 21
getDesignConditionalDunnett, 22
getDesignFisher, 23
getDesignGroupSequential, 25
getDesignInverseNormal, 28
getPowerAndAverageSampleNumber, 43

∗ output formats
getOutputFormat, 39
setOutputFormat, 132

∗ power functions
getPowerMeans, 44
getPowerRates, 46
getPowerSurvival, 49

∗ sample size functions
getSampleSizeMeans, 58
getSampleSizeRates, 60
getSampleSizeSurvival, 62

AccrualTime, 4, 38
AnalysisResults, 8
as.data.frame, 4, 8, 10, 12, 14, 18, 21, 23,

24, 27, 30, 31, 34, 38, 42, 43, 46, 48,
51, 59, 62, 65, 71, 76, 82, 87, 88, 93,
99, 105, 129

as.matrix, 4, 8, 10, 12, 14, 18, 21, 23, 24, 27,
30, 31, 34, 38, 42, 43, 46, 48, 51, 59,
62, 65, 71, 76, 82, 87, 88, 93, 99,
105, 129

character, 106
ClosedCombinationTestResults, 10, 12
ConditionalPowerResults, 14

data.frame, 4, 8, 10, 12, 14, 17, 18, 21, 23,
24, 27, 30, 31, 34, 38, 42, 43, 46, 48,
51, 55, 59, 62, 65, 71, 76, 82, 87, 88,
93, 98–100, 105, 129

Dataset, 18, 109, 129, 130
DatasetMeans, 17, 18
DatasetRates, 18
DatasetSurvival, 18

EventProbabilities, 33, 111, 113

format, 133

getAccrualTime, 4, 32, 37, 51, 64, 97
getAnalysisResults, 6, 11, 12, 14, 15, 36,

37, 56, 58, 105–107
getAvailablePlotTypes (plotTypes), 127
getClosedCombinationTestResults, 9, 10,

12, 14, 15, 36, 37, 56, 58, 105, 106
getClosedConditionalDunnettTestResults,

9, 11, 11, 14, 15, 22, 36, 37, 56, 58,
105, 106

getConditionalPower, 9, 11, 12, 13, 15, 36,
37, 56, 58, 105, 106

getConditionalRejectionProbabilities,
9, 11, 12, 14, 15, 36, 37, 56, 58, 105,
106

getData, 16, 54, 71, 93, 99
getDataset, 6, 17, 35, 56, 104, 128
getDesignCharacteristics, 21, 23, 24, 27,

30, 44
getDesignConditionalDunnett, 12, 21, 22,

24, 27, 30, 44
getDesignFisher, 21, 23, 23, 27, 30, 44, 120
getDesignGroupSequential, 21, 23, 24, 25,

30, 44, 120, 127
getDesignInverseNormal, 21, 23, 24, 27, 28,

44, 120
getDesignSet, 24, 27, 30, 30, 125
getEventProbabilities, 32

142

INDEX 143

getFinalConfidenceInterval, 9, 11, 12, 14,
15, 34, 37, 56, 58, 105, 106

getFinalPValue, 9, 11, 12, 14, 15, 36, 36, 56,
58, 105, 106

getHazardRatioByPi
(utilitiesForSurvivalTrials),
137

getLambdaByMedian
(utilitiesForSurvivalTrials),
137

getLambdaByPi
(utilitiesForSurvivalTrials),
137

getMedianByLambda
(utilitiesForSurvivalTrials),
137

getMedianByPi
(utilitiesForSurvivalTrials),
137

getNumberOfSubjects, 5, 37
getOutputFormat, 39, 133
getPiByLambda

(utilitiesForSurvivalTrials),
137

getPiByMedian
(utilitiesForSurvivalTrials),
137

getPiecewiseExponentialDistribution
(utilitiesForPiecewiseExponentialDistribution),
135

getPiecewiseExponentialQuantile
(utilitiesForPiecewiseExponentialDistribution),
135

getPiecewiseExponentialRandomNumbers
(utilitiesForPiecewiseExponentialDistribution),
135

getPiecewiseSurvivalTime, 33, 40, 51, 64,
97

getPowerAndAverageSampleNumber, 21, 23,
24, 27, 30, 43, 122

getPowerMeans, 44, 48, 52, 123
getPowerRates, 46, 46, 52, 123
getPowerSurvival, 46, 48, 49, 123, 137
getRawData, 54, 98, 100
getRepeatedConfidenceIntervals, 9, 11,

12, 14, 15, 36, 37, 55, 58, 105, 106
getRepeatedPValues, 9, 11, 12, 14, 15, 36,

37, 56, 57, 105, 106
getSampleSizeMeans, 25, 28, 58, 62, 66, 123,

127
getSampleSizeRates, 60, 60, 66, 123
getSampleSizeSurvival, 33, 38, 60, 62, 62,

123, 137
getSimulationMeans, 16, 17, 68
getSimulationMultiArmMeans, 16, 17, 73
getSimulationMultiArmRates, 16, 17, 78
getSimulationMultiArmSurvival, 16, 17,

82
getSimulationRates, 16, 17, 90
getSimulationSurvival, 16, 54, 95, 116
getStageResults, 9–15, 36, 37, 56–58, 104,

106
getTestActions, 9, 11, 12, 14, 15, 36, 37, 56,

58, 105, 106

length, 31
list, 36, 37, 130

matrix, 4, 8, 10, 12, 14, 15, 18, 21, 23, 24, 27,
30, 31, 34, 38, 42, 43, 46, 48, 51, 56,
57, 59, 62, 65, 71, 76, 82, 87, 88, 93,
99, 105, 129

methods, 5, 8, 10, 12, 14, 21, 23, 24, 27, 30,
31, 34, 38, 42, 44, 46, 48, 52, 60, 62,
66, 72, 76, 82, 88, 94, 100, 105

names, 4, 8, 10, 12, 14, 18, 21, 22, 24, 27, 30,
31, 33, 38, 40, 42, 43, 46, 48, 51, 59,
62, 65, 71, 76, 81, 87, 88, 93, 99,
105, 129

nMax, 122
NumberOfSubjects, 38, 111–113
numeric, 15, 57, 106, 136, 138

ParameterSet, 114
PiecewiseSurvivalTime, 41
plot, 4, 8, 10, 12, 14, 18, 21, 23, 24, 27, 30,

31, 34, 38, 42, 43, 46, 48, 51, 59, 62,
65, 71, 76, 82, 87, 88, 93, 99, 105,
129

plot arguments, 107, 118
plot.AnalysisResults, 14, 107
plot.Dataset, 109
plot.EventProbabilities, 111
plot.NumberOfSubjects, 112
plot.ParameterSet, 114
plot.SimulationResults, 115
plot.StageResults, 14, 117
plot.TrialDesign, 120
plot.TrialDesignPlan, 122
plot.TrialDesignSet, 122, 124
plotTypes, 127
PowerAndAverageSampleNumberResult, 43
ppwexp

(utilitiesForPiecewiseExponentialDistribution),
135

144 INDEX

print, 4, 8, 10, 12, 14, 18, 21, 22, 24, 27, 30,
31, 33, 38, 42, 43, 46, 48, 51, 59, 62,
65, 71, 76, 81, 87, 88, 93, 99, 105,
108, 117, 121, 124, 126, 129

qpwexp
(utilitiesForPiecewiseExponentialDistribution),
135

read.table, 128, 130
readDataset, 128, 131, 139, 140
readDatasets, 129, 130, 139, 140
reshape, 128
rpact, 131
rpact-package (rpact), 131
rpwexp

(utilitiesForPiecewiseExponentialDistribution),
135

setOutputFormat, 39, 132
SimulationResults, 16, 54, 70, 76, 81, 87,

88, 93, 99
StageResults, 105
summary, 4, 8, 10, 12, 14, 18, 21, 23, 24, 27,

30, 31, 33, 38, 42, 43, 46, 48, 51, 59,
62, 65, 71, 76, 81, 87, 88, 93, 99,
105, 129

testInstalledPackage, 134
testPackage, 134
thetaH0, 107, 118
TrialDesign, 22, 24, 27, 30
TrialDesignCharacteristics, 21
TrialDesignPlan, 45, 48, 51, 59, 62, 65
TrialDesignSet, 31

utilitiesForPiecewiseExponentialDistribution,
135

utilitiesForSurvivalTrials, 137

write.table, 138–140
writeDataset, 129, 131, 138, 139, 140
writeDatasets, 129–131, 139, 139

	getAccrualTime
	getAnalysisResults
	getClosedCombinationTestResults
	getClosedConditionalDunnettTestResults
	getConditionalPower
	getConditionalRejectionProbabilities
	getData
	getDataset
	getDesignCharacteristics
	getDesignConditionalDunnett
	getDesignFisher
	getDesignGroupSequential
	getDesignInverseNormal
	getDesignSet
	getEventProbabilities
	getFinalConfidenceInterval
	getFinalPValue
	getNumberOfSubjects
	getOutputFormat
	getPiecewiseSurvivalTime
	getPowerAndAverageSampleNumber
	getPowerMeans
	getPowerRates
	getPowerSurvival
	getRawData
	getRepeatedConfidenceIntervals
	getRepeatedPValues
	getSampleSizeMeans
	getSampleSizeRates
	getSampleSizeSurvival
	getSimulationMeans
	getSimulationMultiArmMeans
	getSimulationMultiArmRates
	getSimulationMultiArmSurvival
	getSimulationRates
	getSimulationSurvival
	getStageResults
	getTestActions
	plot.AnalysisResults
	plot.Dataset
	plot.EventProbabilities
	plot.NumberOfSubjects
	plot.ParameterSet
	plot.SimulationResults
	plot.StageResults
	plot.TrialDesign
	plot.TrialDesignPlan
	plot.TrialDesignSet
	plotTypes
	readDataset
	readDatasets
	rpact
	setOutputFormat
	testPackage
	utilitiesForPiecewiseExponentialDistribution
	utilitiesForSurvivalTrials
	writeDataset
	writeDatasets
	Index

