
Package ‘rpact’
May 31, 2019

Title Confirmatory Adaptive Clinical Trial Design and Analysis

Version 2.0.1

Date 2019-05-29

Description Design and analysis of confirmatory adaptive clinical trials with continuous, bi-
nary, and survival endpoints according to the methods described in the monograph by Wass-
mer and Brannath (2016) <doi:10.1007/978-3-319-32562-0>. This includes classical group se-
quential as well as multi-stage adaptive hypotheses tests that are based on the combination test-
ing principle.

License GPL-3

Encoding UTF-8

LazyData true

URL https://www.rpact.org

BugReports https://bugreport.rpact.org

Language en-US

Depends R (>= 3.4.0)

Imports methods,
stats,
utils,
graphics,
tools,
Rcpp (>= 1.0.0)

LinkingTo Rcpp

Suggests parallel,
ggplot2 (>= 2.2.0),
testthat (>= 2.0.0)

RoxygenNote 6.1.1

Collate 'RcppExports.R'
'f_core_constants.R'
'class_core_parameter_set.R'
'class_core_plot_settings.R'
'class_analysis_dataset.R'
'f_core_plot.R'
'class_design.R'
'class_analysis_stage_results.R'
'class_analysis_results.R'

1

https://www.rpact.org
https://bugreport.rpact.org

2 R topics documented:

'class_time.R'
'class_design_set.R'
'f_core_assertions.R'
'f_design_utilities.R'
'class_design_plan.R'
'class_design_power_and_asn.R'
'class_event_probabilities.R'
'f_simulation_survival.R'
'class_simulation_results.R'
'f_analysis.R'
'f_analysis_means.R'
'f_analysis_rates.R'
'f_analysis_survival.R'
'f_core_output_formats.R'
'f_core_utilities.R'
'f_design_fisher_combination_test.R'
'f_design_group_sequential.R'
'f_design_sample_size_calculator.R'
'f_simulation_means.R'
'f_simulation_rates.R'
'pkgname.R'

R topics documented:
getAccrualTime . 3
getAnalysisResults . 8
getDataset . 10
getDesignCharacteristics . 12
getDesignFisher . 13
getDesignGroupSequential . 15
getDesignInverseNormal . 17
getDesignSet . 19
getPiecewiseSurvivalTime . 20
getPowerAndAverageSampleNumber . 22
getPowerMeans . 22
getPowerRates . 24
getPowerSurvival . 26
getSampleSizeMeans . 30
getSampleSizeRates . 31
getSampleSizeSurvival . 33
getSimulationMeans . 37
getSimulationRates . 41
getSimulationSurvival . 45
getStageResults . 52
plot.AnalysisResults . 53
plot.Dataset . 55
plot.SimulationResults . 56
plot.StageResults . 58
plot.TrialDesign . 59
plot.TrialDesignPlan . 61
plot.TrialDesignSet . 63
readDataset . 64

getAccrualTime 3

readDatasets . 65
rpact . 66
utilitiesForPiecewiseExponentialDistribution . 67
utilitiesForSurvivalTrials . 69
writeDataset . 70
writeDatasets . 71

Index 73

getAccrualTime Get Accrual Time

Description

Returns a AccrualTime object that contains the accrual time and the accrual intensity.

Usage

getAccrualTime(accrualTime = NA_real_, ...,
accrualIntensity = NA_real_, maxNumberOfSubjects = NA_real_)

Arguments

accrualTime The assumed accrual time for the study, default is c(0,12) (see details).

... Ensures that all arguments after accrualTime are be named and that a warn-
ing will be displayed if unknown arguments are passed.

accrualIntensity
A vector of accrual intensities, default is the relative intensity 0.1 (see details).

maxNumberOfSubjects
The maximum number of subjects.

Details

accrualTime can also be used to define a non-constant accrual over time. For this, accrualTime
needs to be a vector that defines the accrual intervals and accrualIntensity needs to be spec-
ified. The first element of accrualTime must be equal to 0.
accrualTime can also be a list that combines the definition of the accrual time and accrual inten-
sity accrualIntensity (see below and examples for details). If the length of accrualTime
and the length of accrualIntensity are the same (i.e., the end of accrual is undefined),
maxNumberOfPatients > 0 needs to be specified and the end of accrual is calculated.

accrualIntensity needs to be defined if a vector of accrualTime is specified.
If the length of accrualTime and the length of accrualIntensity are the same (i.e., the
end of accrual is undefined), maxNumberOfPatients > 0 needs to be specified and the end
of accrual is calculated. In that case, accrualIntensity is given by the number of subjects per
time unit.
If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of
accrual is defined), maxNumberOfPatients is calculated. In that case, accrualIntensity
defines the intensity how subjects enter the trial. For example, accrualIntensity = c(1,2)
specifies that in the second accrual interval the intensity is doubled as compared to the first accrual
interval. The actual accrual intensity is calculated for the calculated maxNumberOfPatients.

4 getAccrualTime

Value

Returns a AccrualTime object.

Examples

Case 1

> End of accrual, absolute accrual intensity and `maxNumberOfSubjects` are given,
> `followUpTime`** shall be calculated.

Example: vector based definition

accrualTime <- getAccrualTime(accrualTime = c(0, 6, 30),
accrualIntensity = c(22, 33), maxNumberOfSubjects = 924)

accrualTime

Example: list based definition

accrualTime <- getAccrualTime(list(
"0 - <6" = 22,
"6 - <=30" = 33),
maxNumberOfSubjects = 924)

accrualTime

Example: how to use accrual time object

getSampleSizeSurvival(accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2)

Case 2

> End of accrual, relative accrual intensity and `maxNumberOfSubjects` are given,
> absolute accrual intensity* and `followUpTime`** shall be calculated.

Example: vector based definition

accrualTime <- getAccrualTime(accrualTime = c(0, 6, 30),
accrualIntensity = c(0.22, 0.33), maxNumberOfSubjects = 1000)

accrualTime

Example: list based definition

accrualTime <- getAccrualTime(list(
"0 - <6" = 0.22,
"6 - <=30" = 0.33),
maxNumberOfSubjects = 1000)

accrualTime

Example: how to use accrual time object

getAccrualTime 5

getSampleSizeSurvival(accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2)

Case 3

> End of accrual and absolute accrual intensity are given,
> `maxNumberOfSubjects`* and `followUpTime`** shall be calculated.

Example: vector based definition

accrualTime <- getAccrualTime(accrualTime = c(0, 6, 30), accrualIntensity = c(22, 33))

Example: list based definition

accrualTime <- getAccrualTime(list(
"0 - <6" = 22,
"6 - <=30" = 33))

accrualTime

Example: how to use accrual time object

getSampleSizeSurvival(accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2)

Case 4

> End of accrual, relative accrual intensity and `followUpTime` are given,
> absolute accrual intensity** and `maxNumberOfSubjects`** shall be calculated.

Example: vector based definition

accrualTime <- getAccrualTime(accrualTime = c(0, 6, 30), accrualIntensity = c(0.22, 0.33))
accrualTime

Example: list based definition

accrualTime <- getAccrualTime(list(
"0 - <6" = 0.22,
"6 - <=30" = 0.33))

accrualTime

Example: how to use accrual time object

getSampleSizeSurvival(accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2)

Case 5

> `maxNumberOfSubjects` and absolute accrual intensity are given,
> absolute accrual intensity*, end of accrual* and `followUpTime`** shall be calculated

Example: vector based definition

6 getAccrualTime

accrualTime <- getAccrualTime(accrualTime = c(0, 6),
accrualIntensity = c(22, 33), maxNumberOfSubjects = 1000)

accrualTime

Example: list based definition

accrualTime <- getAccrualTime(list(
"0 - <6" = 22,
"6" = 33),
maxNumberOfSubjects = 1000)

accrualTime

Example: how to use accrual time object

getSampleSizeSurvival(accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2)

Case 6 (not possible)

> `maxNumberOfSubjects` and relative accrual intensity are given,
> absolute accrual intensity[x], end of accrual* and `followUpTime`** shall be calculated

Example: vector based definition

accrualTime <- getAccrualTime(accrualTime = c(0, 6),
accrualIntensity = c(0.22, 0.33), maxNumberOfSubjects = 1000)

accrualTime

Example: list based definition

accrualTime <- getAccrualTime(list(
"0 - <6" = 0.22,
"6" = 0.33),
maxNumberOfSubjects = 1000)

accrualTime

Example: how to use accrual time object

Case 6 is not allowed and therefore an error will be shown:

tryCatch({
getSampleSizeSurvival(accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2)

}, error = function(e) {
print(e$message)

})

Case 7

> `followUpTime` and absolute accrual intensity are given,
> end of accrual** and `maxNumberOfSubjects`** shall be calculated

getAccrualTime 7

Example: vector based definition

accrualTime <- getAccrualTime(accrualTime = c(0, 6), accrualIntensity = c(22, 33))
accrualTime

Example: list based definition

accrualTime <- getAccrualTime(list(
"0 - <6" = 22,
"6" = 33))

accrualTime

Example: how to use accrual time object

getSampleSizeSurvival(accrualTime = accrualTime,
pi1 = 0.4, pi2 = 0.2, followUpTime = 6)

Case 8 (not possible)

> `followUpTime` and relative accrual intensity are given,
> absolute accrual intensity[x], end of accrual and `maxNumberOfSubjects` shall be calculated

Example: vector based definition

accrualTime <- getAccrualTime(accrualTime = c(0, 6), accrualIntensity = c(0.22, 0.33))
accrualTime

Example: list based definition

accrualTime <- getAccrualTime(list(
"0 - <6" = 0.22,
"6" = 0.33))

accrualTime

Example: how to use accrual time object

Case 8 is not allowed and therefore an error will be shown:

tryCatch({
getSampleSizeSurvival(accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2, followUpTime = 6)

}, error = function(e) {
print(e$message)

})

How to show accrual time details

You can use a sample size or power object as argument for function `getAccrualTime`:

sampleSize <- getSampleSizeSurvival(accrualTime = c(0, 6), accrualIntensity = c(22, 53),
lambda2 = 0.05, hazardRatio = 0.8, followUpTime = 6)

sampleSize

8 getAnalysisResults

accrualTime <- getAccrualTime(sampleSize)
accrualTime

getAnalysisResults Get Analysis Results

Description

Calculates and returns the analysis results for the specified design and data.

Usage

getAnalysisResults(design, dataInput, ...,
directionUpper = C_DIRECTION_UPPER_DEFAULT, thetaH0 = NA_real_,
nPlanned = NA_real_)

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival. For
more information see details below.

... Further arguments to be passed to methods (cp. separate functions in See Also),
e.g.,

stage The stage number (optional). Default: total number of existing stages in
the data input.

allocationRatioPlanned The allocation ratio n1/n2 for two treatment groups
planned for the subsequent stages, the default value is 1.

thetaH1 and assumedStDev or pi1, pi2 The assumed effect size or assumed
rates to calculate the conditional power. Depending on the type of dataset,
either thetaH1 (means and survival) or pi1, pi2 (rates) can be specified.
Additionally, if testing means is specified, an assumed standard deviation
can be specified, default is 1.

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if
normalApproximation = FALSE is specified, the binomial test (one
sample) or the test of Fisher (two samples) is used for calculating the p-
values. In the survival setting,
normalApproximation = FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
equalVariances = TRUE.

iterations Iterations for simulating the power for Fisher’s combination test.
If the power for more than one remaining stages is to be determined for
Fisher’s combination test, it is estimated via simulation with specified
iterations, the default value is 10000.

getAnalysisResults 9

seed Seed for simulating the power for Fisher’s combination test. See above,
default is a random seed.

directionUpper
The direction of one-sided testing. Default is directionUpper = TRUE
which means that larger values of the test statistics yield smaller p-values.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case, it is 1
for the survival case. For testing a rate in one sample, a value thetaH0 in (0, 1)
has to be specified for defining the null hypothesis H0: pi = thetaH0.
For non-inferiority designs, this is the non-inferiority bound.

nPlanned The sample size planned for the subsequent stages. It should be a vector with
length equal to the remaining stages and is the overall sample size in the two
treatment groups if two groups are considered.

Details

Given a design and a dataset, at given stage the function calculates the test results (effect sizes, stage-
wise test statistics and p-values, overall p-values and test statistics, conditional rejection probability
(CRP), conditional power, Repeated Confidence Intervals (RCIs), repeated overall p-values, and
final stage p-values, median unbiased effect estimates, and final confidence intervals.

dataInput is either an element of DatasetMeans, of DatasetRates, or of DatasetSurvival
and should be created with the function getDataset.

Value

Returns an AnalysisResults object.

Note

The conditional power is calculated only if effect size and sample size is specified. Median unbiased
effect estimates and confidence intervals are calculated if a group sequential design or an inverse
normal combination test design was chosen, i.e., it is not applicable for Fisher’s p-value combination
test design.

A final stage p-value for Fisher’s combination test is calculated only if a two-stage design was
chosen. For Fisher’s combination test, the conditional power for more than one remaining stages is
estimated via simulation.

See Also

Alternatively the analysis results can be calculated separately using one of the following functions:

• getTestActions,

• getConditionalPower,

• getConditionalRejectionProbabilities,

• getRepeatedConfidenceIntervals,

• getRepeatedPValues,

• getFinalConfidenceInterval,

• getFinalPValue.

10 getDataset

Examples

design <- getDesignGroupSequential()
dataMeans <- getDataset(

n = c(10,10),
means = c(1.96,1.76),
stDevs = c(1.92,2.01))

getAnalysisResults(design, dataMeans)

getDataset Get Dataset

Description

Creates a dataset object and returns it.

Usage

getDataset(..., floatingPointNumbersEnabled = FALSE)

Arguments

... A data.frame or some data vectors defining the dataset.
floatingPointNumbersEnabled

If TRUE, sample sizes can be specified as floating-point numbers (in general this
only make sense for simulation purposes);
by default floatingPointNumbersEnabled = FALSE, i.e., samples sizes
defined as floating-point numbers will be truncated.

Details

The different dataset types DatasetMeans, of DatasetRates, or DatasetSurvival can
be created as follows:

• An element of DatasetMeans for one sample is created by
getDataset(sampleSizes =, means =, stDevs =) where
sampleSizes, means, stDevs are vectors with stagewise sample sizes, means and stan-
dard deviations of length given by the number of available stages.

• An element of DatasetMeans for two samples is created by
getDataset(sampleSizes1 =, sampleSizes2 =, means1 =, means2 =,
stDevs1 =, stDevs2 =)where sampleSizes1, sampleSizes2, means1, means2,
stDevs1, stDevs2 are vectors with stagewise sample sizes, means and standard deviations
for the two treatment groups of length given by the number of available stages.

• An element of DatasetRates for one sample is created by
getDataset(sampleSizes =, events =)where sampleSizes, events are vec-
tors with stagewise sample sizes and events of length given by the number of available stages.

getDataset 11

• An element of DatasetRates for two samples is created by
getDataset(sampleSizes1 =, sampleSizes2 =, events1 =, events2 =)
where sampleSizes1, sampleSizes2, events1, events2 are vectors with stagewise
sample sizes and events for the two treatment groups of length given by the number of avail-
able stages.

• An element of DatasetSurvival is created by
getDataset(events=, logRanks =, allocationRatios =) where events,
logRanks, and allocation ratios are the stagewise events, (one-sided) logrank statis-
tics, and allocation ratios.

Prefix overall[Capital case of first letter of variable name]... for the
variable names enables entering the overall results and calculates stagewise statistics.

Note that in survival design usually the overall events and logrank test statistics are provided in the
output, so
getDataset(overallEvents=, overallLogRanks =, overallAllocationRatios =)
is the usual command for entering survival data. Note also that for overallLogranks also the
z scores from a Cox regression can be used.

n can be used in place of samplesizes.

Value

Returns a Dataset object.

Examples

Create a Dataset of Means (one group):

datasetOfMeans <- getDataset(
n = c(22, 11, 22, 11),
means = c(1, 1.1, 1, 1),
stDevs = c(1, 2, 2, 1.3)

)
datasetOfMeans
datasetOfMeans$show(showType = 2)

datasetOfMeans <- getDataset(
overallSampleSizes = c(22, 33, 55, 66),
overallMeans = c(1.000, 1.033, 1.020, 1.017),
overallStDevs = c(1.00, 1.38, 1.64, 1.58)

)
datasetOfMeans
datasetOfMeans$show(showType = 2)
as.data.frame(datasetOfMeans)

Create a Dataset of Means (two groups):

datasetOfMeans <- getDataset(
n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)

12 getDesignCharacteristics

datasetOfMeans

datasetOfMeans <- getDataset(
overallSampleSizes1 = c(22, 33, 55, 66),
overallSampleSizes2 = c(22, 35, 57, 70),
overallMeans1 = c(1, 1.033, 1.020, 1.017),
overallMeans2 = c(1.4, 1.437, 2.040, 2.126),
overallStDevs1 = c(1, 1.38, 1.64, 1.58),
overallStDevs2 = c(1, 1.43, 1.82, 1.74)

)
datasetOfMeans

df <- data.frame(
stages = 1:4,
n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)
datasetOfMeans <- getDataset(df)
datasetOfMeans

Create a Dataset of Rates (one group):

datasetOfRates <- getDataset(
n = c(8, 10, 9, 11),
events = c(4, 5, 5, 6)

)
datasetOfRates

Create a Dataset of Rates (two groups):

datasetOfRates <- getDataset(
n2 = c(8, 10, 9, 11),
n1 = c(11, 13, 12, 13),
events2 = c(3, 5, 5, 6),
events1 = c(10, 10, 12, 12)

)
datasetOfRates

Create a Survival Dataset

dataset <- getDataset(
overallEvents = c(8, 15, 19, 31),

overallAllocationRatios = c(1, 1, 1, 2),
overallLogRanks = c(1.52, 1.98, 1.99, 2.11)

)
dataset

getDesignCharacteristics
Get Design Characteristics

getDesignFisher 13

Description

Calculates the characteristics of a design and returns it.

Usage

getDesignCharacteristics(design)

Arguments

design The design.

Details

Calculates the inflation factor (IF), the expected reduction in sample size under H1, under H0, and
under a value in between H0 and H1. Furthermore, absolute information values are calculated under
the prototype case testing H0: mu = 0 against H1: mu = 1.

Value

Returns a TrialDesignCharacteristics object.

Examples

Run with default values
getDesignCharacteristics(getDesignGroupSequential())

getDesignFisher Get Design Fisher

Description

Performs Fisher’s combination test and returns critical values for this design.

Usage

getDesignFisher(..., kMax = NA_integer_, alpha = NA_real_,
method = C_FISHER_METHOD_DEFAULT, userAlphaSpending = NA_real_,
alpha0Vec = NA_real_, informationRates = NA_real_, sided = 1,
bindingFutility = NA,
tolerance = C_ANALYSIS_TOLERANCE_FISHER_DEFAULT, iterations = 0,
seed = NA_real_)

Arguments

... Ensures that all arguments are be named and that a warning will be displayed if
unknown arguments are passed.

kMax The maximum number of stages K. K = 1, 2, 3, ..., 6, default is 3.

alpha The significance level alpha, default is 0.025.

14 getDesignFisher

method "equalAlpha", "fullAlpha", "noInteraction", or "userDefinedAlpha", default is
"equalAlpha".

userAlphaSpending
A vector of levels 0 < alpha_1 < ... < alpha_K < alpha specifying the cumulative
Type I error rate.

alpha0Vec Stopping for futility bounds for stage-wise p-values.
informationRates

Information rates that must be fixed prior to the trial, default is (1 : kMax) / kMax.

sided Is the alternative one-sided (1) or two-sided (2), default is 1.
bindingFutility

If bindingFutility = FALSE is specified the calculation of the critical
values is not affected by the futility bounds (default is TRUE).

tolerance The tolerance, default is 1E-14.

iterations The number of simulation iterations, e.g., getDesignFisher(iterations = 100000)
checks the validity of the critical values for the default design. The default value
of iterations is 0, i.e., no simulation will be executed.

seed Seed for simulating the power for Fisher’s combination test. See above, default
is a random seed.

Details

getDesignFisher calculates the critical values and stage levels for Fisher’s combination test
as described in Bauer (1989), Bauer and Koehne (1994), Bauer and Roehmel (1995), and Wassmer
(1999) for equally and unequally sized stages.

Value

Returns a TrialDesignFisher object

See Also

getDesignSet for creating a set of designs to compare.

Examples

Run with default values
getDesignFisher()

The output is:
#
Design parameters and output of Fisher design:
User defined parameters: not available
#
Derived from user defined parameters: not available
#
Default parameters:
Method : equalAlpha
Maximum number of stages : 3
Stages : 1, 2, 3
Information rates : 0.333, 0.667, 1.000
Significance level : 0.0250
Alpha_0 : 1.0000, 1.0000
Binding futility : TRUE

getDesignGroupSequential 15

Test : one-sided
Tolerance : 1e-14
#
Output:
Cumulative alpha spending : 0.01231, 0.01962, 0.02500
Critical values : 0.0123085, 0.0016636, 0.0002911
Stage levels : 0.01231, 0.01231, 0.01231
Scale : 1, 1
Non stochastic curtailment : FALSE

getDesignGroupSequential
Get Design Group Sequential

Description

Provides adjusted boundaries and defines a group sequential design.

Usage

getDesignGroupSequential(..., kMax = NA_integer_, alpha = NA_real_,
beta = NA_real_, sided = 1, informationRates = NA_real_,
futilityBounds = NA_real_, typeOfDesign = C_DEFAULT_TYPE_OF_DESIGN,
deltaWT = 0,
optimizationCriterion = C_OPTIMIZATION_CRITERION_DEFAULT, gammaA = 1,
typeBetaSpending = C_TYPE_OF_DESIGN_BS_NONE,
userAlphaSpending = NA_real_, userBetaSpending = NA_real_,
gammaB = 1, bindingFutility = NA,
constantBoundsHP = C_CONST_BOUND_HP_DEFAULT,
twoSidedPower = C_TWO_SIDED_POWER_DEFAULT,
tolerance = C_DESIGN_TOLERANCE_DEFAULT)

Arguments

... Ensures that all arguments are be named and that a warning will be displayed if
unknown arguments are passed.

kMax The maximum number of stages K. K = 1, 2, 3,..., 10, default is 3.

alpha The significance level alpha, default is 0.025.

beta Type II error rate, necessary for providing sample size calculations
(e.g., getSampleSizeMeans), beta spending function designs, or optimum
designs, default is 0.20.

sided One-sided or two-sided, default is 1.
informationRates

The information rates, default is (1 : kMax)/kMax.
futilityBounds

The futility bounds, defined on the test statistic z scale (vector of length K - 1).

16 getDesignGroupSequential

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Haybittle & Peto
("HP"), Optimum design within Wang & Tsiatis class ("WToptimum"), O’Brien
& Fleming type alpha spending ("asOF"), Pocock type alpha spending ("asP"),
Kim & DeMets alpha spending ("asKD"), Hwang, Shi & DeCani alpha spending
("asHSD"), user defined alpha spending ("asUser"), default is "OF".

deltaWT Delta for Wang & Tsiatis Delta class.
optimizationCriterion

Optimization criterion for optimum design within Wang & Tsiatis class ("ASNH1",
"ASNIFH1", "ASNsum"), default is "ASNH1".

gammaA Parameter for alpha spending function, default is 1.
typeBetaSpending

Type of beta spending. Type of of beta spending is one of the following: O’Brien
& Fleming type beta spending, Pocock type beta spending, Kim & DeMets
beta spending, Hwang, Shi & DeCani beta spending, user defined beta spending
("bsOF", "bsP",...).

userAlphaSpending
The user defined alpha spending. Vector of length kMax containing the cumu-
lative alpha-spending up to each interim stage.

userBetaSpending
The user defined beta spending. Vector of length kMax containing the cumula-
tive beta-spending up to each interim stage.

gammaB Parameter for beta spending function, default is 1.
bindingFutility

If bindingFutility = TRUE is specified the calculation of the critical val-
ues is affected by the futility bounds (default is FALSE).

constantBoundsHP
The constant bounds up to stage K - 1 for the Haybittle & Peto design (default
is 3).

twoSidedPower
For two-sided testing, if twoSidedPower = TRUE is specified the sample
size calculation is performed by considering both tails of the distribution. De-
fault is FALSE, i.e., it is assumed that one tail probability is equal to 0 or the
power should be directed to one part.

tolerance The tolerance, default is 1e-08.

Details

Depending on typeOfDesign some parameters are specified, others not. For example, only if
typeOfDesign "asHSD" is selected, gammaA needs to be specified.

If an alpha spending approach was specified ("asOF", "asP", "asKD", "asHSD", or "asUser") addi-
tionally a beta spending function can be specified to produce futility bounds.

Value

Returns a TrialDesignGroupSequential object.

See Also

getDesignSet for creating a set of designs to compare.

getDesignInverseNormal 17

Examples

Run with default values
getDesignGroupSequential()

Calculate the Pocock type alpha spending critical values if the second
interim analysis was performed after 70% of information was observed
getDesignGroupSequential(informationRates = c(0.4, 0.7), typeOfDesign = "asP")

getDesignInverseNormal
Get Design Inverse Normal

Description

Provides adjusted boundaries and defines a group sequential design for its use in the inverse normal
combination test.

Usage

getDesignInverseNormal(..., kMax = NA_integer_, alpha = NA_real_,
beta = NA_real_, sided = 1, informationRates = NA_real_,
futilityBounds = NA_real_, typeOfDesign = C_DEFAULT_TYPE_OF_DESIGN,
deltaWT = 0,
optimizationCriterion = C_OPTIMIZATION_CRITERION_DEFAULT, gammaA = 1,
typeBetaSpending = C_TYPE_OF_DESIGN_BS_NONE,
userAlphaSpending = NA_real_, userBetaSpending = NA_real_,
gammaB = 1, bindingFutility = C_BINDING_FUTILITY_DEFAULT,
constantBoundsHP = C_CONST_BOUND_HP_DEFAULT,
twoSidedPower = C_TWO_SIDED_POWER_DEFAULT,
tolerance = C_DESIGN_TOLERANCE_DEFAULT)

Arguments

... Ensures that all arguments are be named and that a warning will be displayed if
unknown arguments are passed.

kMax The maximum number of stages K. K = 1, 2, 3,..., 10, default is 3.

alpha The significance level alpha, default is 0.025.

beta Type II error rate, necessary for providing sample size calculations
(e.g., getSampleSizeMeans), beta spending function designs, or optimum
designs, default is 0.20.

sided One-sided or two-sided, default is 1.
informationRates

The information rates, default is (1 : kMax)/kMax.
futilityBounds

The futility bounds (vector of length K - 1).

18 getDesignInverseNormal

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Haybittle & Peto
("HP"), Optimum design within Wang & Tsiatis class ("WToptimum"), O’Brien
& Fleming type alpha spending ("asOF"), Pocock type alpha spending ("asP"),
Kim & DeMets alpha spending ("asKD"), Hwang, Shi & DeCani alpha spending
("asHSD"), user defined alpha spending ("asUser"), default is "OF".

deltaWT Delta for Wang & Tsiatis Delta class.
optimizationCriterion

Optimization criterion for optimum design within Wang & Tsiatis class ("ASNH1",
"ASNIFH1", "ASNsum"), default is "ASNH1".

gammaA Parameter for alpha spending function, default is 1.
typeBetaSpending

Type of beta spending. Type of of beta spending is one of the following: O’Brien
& Fleming type beta spending, Pocock type beta spending, Kim & DeMets
beta spending, Hwang, Shi & DeCani beta spending, user defined beta spending
("bsOF", "bsP",...).

userAlphaSpending
The user defined alpha spending. Vector of length kMax containing the cumu-
lative alpha-spending up to each interim stage.

userBetaSpending
The user defined beta spending. Vector of length kMax containing the cumula-
tive beta-spending up to each interim stage.

gammaB Parameter for beta spending function, default is 1.
bindingFutility

If bindingFutility = TRUE is specified the calculation of the critical val-
ues is affected by the futility bounds (default is FALSE).

constantBoundsHP
The constant bounds up to stage K - 1 for the Haybittle & Peto design (default
is 3).

twoSidedPower
For two-sided testing, if twoSidedPower = TRUE is specified the sample
size calculation is performed by considering both tails of the distribution. De-
fault is FALSE, i.e., it is assumed that one tail probability is equal to 0 or the
power should be directed to one part.

tolerance The tolerance, default is 1e-08.

Details

Depending on typeOfDesign some parameters are specified, others not. For example, only if
typeOfDesign "asHSD" is selected, gammaA needs to be specified.

If an alpha spending approach was specified ("asOF", "asP", "asKD", "asHSD", or "asUser") addi-
tionally a beta spending function can be specified to produce futility bounds.

Value

Returns a TrialDesignInverseNormal object.

See Also

getDesignSet for creating a set of designs to compare.

getDesignSet 19

Examples

Run with default values
getDesignInverseNormal()

Calculate the Pocock type alpha spending critical values if the second
interim analysis was performed after 70% of information was observed
getDesignInverseNormal(informationRates = c(0.4, 0.7),

typeOfDesign = "asP")

getDesignSet Get Design Set

Description

Creates a trial design set object and returns it.

Usage

getDesignSet(...)

Arguments

... ’designs’ OR ’design’ and one or more design parameters, e.g., deltaWT = c(0.1,
0.3, 0.4).

• design The master design (optional, you need to specify an additional
parameter that shall be varied).

• designs The designs to compare (optional).

Details

Specify a master design and one or more design parameters or a list of designs.

Value

Returns a TrialDesignSet object.

Examples

Example 1
design <- getDesignGroupSequential(alpha = 0.05, kMax = 6,

sided = 2, typeOfDesign = "WT", deltaWT = 0.1)
designSet <- getDesignSet()
designSet$add(design = design, deltaWT = c(0.3, 0.4))
if (require(ggplot2)) plot(designSet, type = 1)

Example 2 (shorter script)
design <- getDesignGroupSequential(alpha = 0.05, kMax = 6,

sided = 2, typeOfDesign = "WT", deltaWT = 0.1)
designSet <- getDesignSet(design = design, deltaWT = c(0.3, 0.4))
if (require(ggplot2)) plot(designSet)

20 getPiecewiseSurvivalTime

getPiecewiseSurvivalTime
Get Piecewise Survival Time

Description

Returns a PiecewiseSurvivalTime object that contains the all relevant parameters of an ex-
ponential survival time cumulative distribution function.

Usage

getPiecewiseSurvivalTime(piecewiseSurvivalTime = NA_real_, ...,
lambda1 = NA_real_, lambda2 = NA_real_, hazardRatio = NA_real_,
pi1 = NA_real_, pi2 = NA_real_, eventTime = C_EVENT_TIME_DEFAULT,
kappa = 1, delayedResponseAllowed = FALSE)

Arguments
piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function (see details).

... Ensures that all arguments after piecewiseSurvivalTime are be named
and that a warning will be displayed if unknown arguments are passed.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times
(see details).

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details).

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated.

pi1 The assumed event rate in the treatment group, default is seq(0.4, 0.6, 0.1).

pi2 The assumed event rate in the control group, default is 0.2.

eventTime The assumed time under which the event rates are calculated, default is 12.

kappa The shape parameter of the Weibull distribution, default is 1. The Weibull distri-
bution cannot be used for the piecewise definition of the survival time distribu-
tion. Note that the parameters shape and scale in Weibull are equivalent
to kappa and 1 / lambda, respectively, in rpact.

delayedResponseAllowed
If TRUE, delayed response is allowed; otherwise it will be validatet that the
definition is not delayed, default is FALSE.

Details

piecewiseSurvivalTime The first element of this vector must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

getPiecewiseSurvivalTime 21

Value

Returns a PiecewiseSurvivalTime object.

Examples

pwst <- getPiecewiseSurvivalTime(lambda2 = 0.5, hazardRatio = 0.8)
pwst

pwst <- getPiecewiseSurvivalTime(lambda2 = 0.5, lambda1 = 0.4)
pwst

pwst <- getPiecewiseSurvivalTime(pi2 = 0.5, hazardRatio = 0.8)
pwst

pwst <- getPiecewiseSurvivalTime(pi2 = 0.5, pi1 = 0.4)
pwst

pwst <- getPiecewiseSurvivalTime(pi1 = 0.3)
pwst

pwst <- getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4)
pwst

pwst <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6, 9),
lambda2 = c(0.025, 0.04, 0.015), hazardRatio = 0.8)

pwst

pwst <- getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6, 9),
lambda2 = c(0.025, 0.04, 0.015),
lambda1 = c(0.025, 0.04, 0.015) * 0.8)

pwst

pwst <- getPiecewiseSurvivalTime(list(
"0 - <6" = 0.025,
"6 - <9" = 0.04,
"9 - <15" = 0.015,
"15 - <21" = 0.01,
">=21" = 0.007), hazardRatio = 0.75)

pwst

The object created by getPiecewiseSurvivalTime() can be used directly in getSampleSizeSurvival():
getSampleSizeSurvival(piecewiseSurvivalTime = pwst)

The object created by getPiecewiseSurvivalTime() can be used directly in getPowerSurvival():
getPowerSurvival(piecewiseSurvivalTime = pwst,

maxNumberOfEvents = 40, maxNumberOfSubjects = 100)

22 getPowerMeans

getPowerAndAverageSampleNumber
Get Power And Average Sample Number

Description

Returns the power and average sample number of the specified design.

Usage

getPowerAndAverageSampleNumber(design, theta = seq(-1, 1, 0.02),
nMax = 100)

Arguments

design The design.

theta A vector of standardized effect sizes.

nMax The maximum sample size.

Details

This function returns the power and average sample number (ASN) of the specified design for
the prototype case which is testing H0: mu = mu0 in a one-sample design. theta represents the
standardized effect (mu - mu0)/sigma and power and ASN is calculated for maximum sample size
nMax. For other designs than the one-sample test of a mean the standardized effect needs to be
adjusted accordingly.

Value

Returns a PowerAndAverageSampleNumberResult object.

Examples

getPowerAndAverageSampleNumber(
getDesignGroupSequential(),
theta = seq(-1, 1, 0.5), nMax = 100)

getPowerMeans Get Power Means

Description

Returns the power, stopping probabilities, and expected sample size for testing means in one or two
samples at given sample size.

getPowerMeans 23

Usage

getPowerMeans(design = NULL, ..., normalApproximation = FALSE,
meanRatio = FALSE, thetaH0 = ifelse(meanRatio, 1, 0),
alternative = C_ALTERNATIVE_POWER_SIMULATION_DEFAULT,
stDev = C_STDEV_DEFAULT, directionUpper = NA,
maxNumberOfSubjects = NA_real_, groups = 2,
allocationRatioPlanned = NA_real_)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, alpha, beta, twoSidedPower, and sided can be directly
entered as argument.

... Ensures that all arguments are be named and that a warning will be displayed if
unknown arguments are passed.

normalApproximation
If normalApproximation = TRUE is specified, the variance is assumed
to be known, default is FALSE, i.e., the calculations are performed with the t
distribution.

meanRatio If meanRatio = TRUE is specified, the sample size for one-sided testing of
H0: mu1/mu2 = thetaH0 is calculated, default is FALSE.

thetaH0 The null hypothesis value. For one-sided testing, a value != 0 (or a value != 1
for testing the mean ratio) can be specified, default is 0 or 1 for difference and
ratio testing, respectively.

alternative The alternative hypothesis value. This can be a vector of assumed alternatives,
default is seq(0,1,0.2).

stDev The standard deviation, default is 1. If meanRatio = TRUE is specified,
stDev defines the coefficient of variation sigma/mu2.

directionUpper
Specifies the direction of the alternative, only applicable for one-sided testing,
default is TRUE.

maxNumberOfSubjects
maxNumberOfSubjects > 0 needs to be specified. If accrual time and
accrual intensity is specified, this will be calculated.

groups The number of treatment groups (1 or 2), default is 2.
allocationRatioPlanned

The planned allocation ratio for a two treatment groups design, default is 1.

Details

At given design the function calculates the power, stopping probabilities, and expected sample size,
for testing means at given sample size. In a two treatment groups design, additionally, an allocation
ratio = n1/n2 can be specified. A null hypothesis value thetaH0 != 0 for testing the difference of two
means or thetaH0 != 1 for testing the ratio of two means can be specified. For the specified sample
size, critical bounds and stopping for futility bounds are provided at the effect scale (mean, mean
difference, or mean ratio, respectively)

Value

Returns a TrialDesignPlanMeans object.

24 getPowerRates

Examples

Calculate the power, stopping probabilities, and expected sample size for testing H0:
mu1 - mu2 = 0 in a two-armed design
against a range of alternatives H1: mu1 - m2 = delta, delta = (0, 1, 2, 3, 4, 5),
standard deviation sigma = 8, maximum sample size N = 80 (both treatment arms),
and an allocation ratio n1/n2 = 2. The design is a three stage O'Brien & Fleming design
with non-binding futility bounds (-0.5, 0.5) for the two interims.
The computation takes into account that the t test is used (normalApproximation = FALSE).
getPowerMeans(getDesignGroupSequential(alpha = 0.025,

sided = 1, futilityBounds = c(-0.5, 0.5)),
groups = 2, alternative = c(0:5), stDev = 8,
normalApproximation = FALSE, maxNumberOfSubjects = 80,
allocationRatioPlanned = 2)

getPowerRates Get Power Rates

Description

Returns the power, stopping probabilities, and expected sample size for testing rates in one or two
samples at given sample sizes.

Usage

getPowerRates(design = NULL, ..., normalApproximation = TRUE,
riskRatio = FALSE, thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = C_PI_1_DEFAULT, pi2 = 0.2, directionUpper = NA,
maxNumberOfSubjects = NA_real_, groups = 2,
allocationRatioPlanned = NA_real_)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, alpha, beta, and sided can be directly entered as argument

... Ensures that all arguments are be named and that a warning will be displayed if
unknown arguments are passed.

normalApproximation
If normalApproximation = FALSE is specified, the sample size for the
case of one treatment group is calculated exactly using the binomial distribution,
default is TRUE.

riskRatio If riskRatio = TRUE is specified, the sample size for one-sided testing of
H0: pi1/pi2 = thetaH0 is calculated, default is FALSE.

thetaH0 The null hypothesis value. For one-sided testing, a value != 0 (or != 1 for testing
the risk ratio pi1/pi2) can be specified, default is 0 or 1 for difference and
ratio testing, respectively.

pi1 The assumed probability in the active treatment group if two treatment groups
are considered, or the alternative probability for a one treatment group design,
default is seq(0.2,0.5,0.1).

getPowerRates 25

pi2 The assumed probability in the reference group if two treatment groups are con-
sidered, default is 0.2.

directionUpper
Specifies the direction of the alternative, only applicable for one-sided testing,
default is TRUE.

maxNumberOfSubjects
maxNumberOfSubjects > 0 needs to be specified. If accrual time and
accrual intensity is specified, this will be calculated.

groups The number of treatment groups (1 or 2), default is 2.

allocationRatioPlanned
The planned allocation ratio for a two treatment groups design, default is 1.

Details

At given design the function calculates the power, stopping probabilities, and expected sample size,
for testing rates for given maximum sample size. The sample sizes over the stages are calculated
according to the specified information rate in the design. In a two treatment groups design, addi-
tionally, an allocation ratio = n1/n2 can be specified. If a null hypothesis value thetaH0 != 0 for
testing the difference of two rates or thetaH0 != 1 for testing the risk ratio is specified, the formulas
according to Farrington & Manning (Statistics in Medicine, 1990) are used (only one-sided testing).
Critical bounds and stopping for futility bounds are provided at the effect scale (rate, rate difference,
or rate ratio, respectively). For the two-sample case, the calculation here is performed at fixed pi2
as given as argument in the function.

Value

Returns a TrialDesignPlanRates object.

Examples

Calculate the power, stopping probabilities, and expected sample size in a two-armed
design at given maximum sample size N = 200
in a three-stage O'Brien & Fleming design with information rate vector (0.2,0.5,1),
non-binding futility boundaries (0,0), i.e.,
the study stops for futility if the p-value exceeds 0.5 at interm, and
allocation ratio = 2 for a range of pi1 values when testing H0: pi1 - pi2 = -0.1:
getPowerRates(getDesignGroupSequential(informationRates = c(0.2,0.5,1),

futilityBounds = c(0,0)), groups = 2, thetaH0 = -0.1,
pi1 = seq(0.3, 0.6, 0.1), directionUpper = FALSE,
pi2 = 0.7, allocationRatioPlanned = 2, maxNumberOfSubjects = 200)

Calculate the power, stopping probabilities, and expected sample size in a single
arm design at given maximum sample size N = 60 in a three-stage two-sided
O'Brien & Fleming design with information rate vector (0.2,0.5,1)
for a range of pi1 values when testing H0: pi = 0.3:
getPowerRates(getDesignGroupSequential(informationRates = c(0.2,0.5,1),

sided = 2), groups = 1, thetaH0 = 0.3, pi1 = seq(0.3, 0.5, 0.05),
maxNumberOfSubjects = 60)

26 getPowerSurvival

getPowerSurvival Get Power Survival

Description

Returns the power, stopping probabilities, and expected sample size for testing the hazard ratio in a
two treatment groups survival design.

Usage

getPowerSurvival(design = NULL, ...,
typeOfComputation = c("Schoenfeld", "Freedman", "HsiehFreedman"),
thetaH0 = C_THETA_H0_SURVIVAL_DEFAULT, directionUpper = NA,
pi1 = NA_real_, pi2 = NA_real_, lambda1 = NA_real_,
lambda2 = NA_real_, kappa = 1, hazardRatio = NA_real_,
piecewiseSurvivalTime = NA_real_, allocationRatioPlanned = 1,
eventTime = C_EVENT_TIME_DEFAULT,
accrualTime = C_ACCRUAL_TIME_DEFAULT,
accrualIntensity = C_ACCRUAL_INTENSITY_DEFAULT,
maxNumberOfSubjects = NA_real_, maxNumberOfEvents = NA_real_,
dropoutRate1 = C_DROP_OUT_RATE_1_DEFAULT,
dropoutRate2 = C_DROP_OUT_RATE_2_DEFAULT,
dropoutTime = C_DROP_OUT_TIME_DEFAULT)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, alpha, beta, twoSidedPower, and sided can be directly
entered as argument.

... Ensures that all arguments are be named and that a warning will be displayed if
unknown arguments are passed.

typeOfComputation
Three options are available: "Schoenfeld", "Freedman", "HsiehFreedman", the
default is "Schoenfeld". For details, see Hsieh (Statistics in Medicine, 1992).
For non-inferiority testing (i.e., thetaH0 != 1), only Schoenfelds formula can be
used

thetaH0 The null hypothesis value. The default value is 1. For one-sided testing, a bound
for testing H0: hazard ratio = thetaH0 != 1 can be specified.

directionUpper
Specifies the direction of the alternative, only applicable for one-sided testing,
default is TRUE.

pi1 The assumed event rate in the treatment group, default is seq(0.2,0.5,0.1).

pi2 The assumed event rate in the control group, default is 0.2.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times
(see details).

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details).

getPowerSurvival 27

kappa The shape parameter of the Weibull distribution, default is 1. The Weibull distri-
bution cannot be used for the piecewise definition of the survival time distribu-
tion. Note that the parameters shape and scale in Weibull are equivalent
to kappa and 1 / lambda, respectively, in rpact.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated.

piecewiseSurvivalTime
A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function (see details).

allocationRatioPlanned
The planned allocation ratio, default is 1.

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time intervals for the study, default is c(0,12) (see de-
tails).

accrualIntensity
A vector of accrual intensities, default is 1 (see details).

maxNumberOfSubjects
maxNumberOfSubjects > 0 needs to be specified. If accrual time and
accrual intensity is specified, this will be calculated.

maxNumberOfEvents
maxNumberOfEvents > 0 is the maximum number of events, determines
the power of the test and needs to be specified.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

Details

At given design the function calculates the power, stopping probabilities, and expected sample
size at given number of events and number of subjects. It also calculates the time when the re-
quired events are expected under the given assumptions (exponentially, piecewise exponentially, or
Weibull distributed survival times and constant or non-constant piecewise accrual). Additionally,
an allocation ratio = n1/n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

The formula of Kim & Tsiatis (Biometrics, 1990) is used to calculated the expected number of
events under the alternative (see also Lakatos & Lan, Statistics in Medicine, 1992). These formulas
are generalized to piecewise survival times and non-constant piecewise accrual over time.

piecewiseSurvivalTime The first element of this vector must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

accrualTime can also be used to define a non-constant accrual over time. For this, accrualTime
needs to be a vector that defines the accrual intervals and accrualIntensity needs to be spec-
ified. The first element of accrualTime must be equal to 0.
accrualTime can also be a list that combines the definition of the accrual time and accrual inten-
sity accrualIntensity (see below and examples for details). If the length of accrualTime

28 getPowerSurvival

and the length of accrualIntensity are the same (i.e., the end of accrual is undefined),
maxNumberOfPatients > 0 needs to be specified and the end of accrual is calculated.

accrualIntensity needs to be defined if a vector of accrualTime is specified.
If the length of accrualTime and the length of accrualIntensity are the same (i.e., the
end of accrual is undefined), maxNumberOfPatients > 0 needs to be specified and the end
of accrual is calculated. In that case, accrualIntensity is given by the number of subjects per
time unit.
If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of
accrual is defined), maxNumberOfPatients is calculated. In that case, accrualIntensity
defines the intensity how subjects enter the trial. For example, accrualIntensity = c(1,2)
specifies that in the second accrual interval the intensity is doubled as compared to the first accrual
interval. The actual accrual intensity is calculated for the calculated maxNumberOfPatients.

Value

Returns a TrialDesignPlanSurvival object.

Examples

Fixed sample size with minimum required definitions, pi1 = c(0.4,0.5,0.5) and
pi2 = 0.2 at event time 12, accrual time 12 and follow-up time 6 as default
getPowerSurvival(maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Four stage O'Brien & Fleming group sequential design with minimum required
definitions, pi1 = c(0.4,0.5,0.5) and pi2 = 0.2 at event time 12,
accrual time 12 and follow-up time 6 as default
getPowerSurvival(design = getDesignGroupSequential(kMax = 4),

maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

For fixed sample design, determine necessary accrual time if 200 subjects and
30 subjects per time unit can be recruited
getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0),

accrualIntensity = 30, maxNumberOfSubjects = 200)

Determine necessary accrual time if 200 subjects and if the first 6 time units
20 subjects per time unit can be recruited, then 30 subjects per time unit
getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0, 6),

accrualIntensity = c(20, 30), maxNumberOfSubjects = 200)

Determine maximum number of Subjects if the first 6 time units 20 subjects per
time unit can be recruited, and after 10 time units 30 subjects per time unit
getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0, 6, 10), accrualIntensity = c(20, 30))

Specify accrual time as a list
at <- list(

"0 - <6" = 20,
"6 - Inf" = 30)

getPowerSurvival(maxNumberOfEvents = 40, accrualTime = at, maxNumberOfSubjects = 200)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30)

getPowerSurvival 29

getPowerSurvival(maxNumberOfEvents = 40, accrualTime = at)

Specify effect size for a two-stage group design with O'Brien & Fleming boundaries
Effect size is based on event rates at specified event time, directionUpper = FALSE
needs to be specified because it should be shown that hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential(kMax = 2), pi1 = 0.2, pi2 = 0.3,

eventTime = 24, maxNumberOfEvents = 40, maxNumberOfSubjects = 200, directionUpper = FALSE)

Effect size is based on event rate at specified event time for the reference group
and hazard ratio, directionUpper = FALSE needs to be specified
because it should be shown that hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential(kMax = 2), hazardRatio = 0.5, pi2 = 0.3,

eventTime = 24, maxNumberOfEvents = 40, maxNumberOfSubjects = 200, directionUpper = FALSE)

Effect size is based on hazard rate for the reference group and hazard ratio,
directionUpper = FALSE needs to be specified because it should be shown that hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential(kMax = 2), hazardRatio = 0.5,

lambda2 = 0.02, maxNumberOfEvents = 40, maxNumberOfSubjects = 200, directionUpper = FALSE)

Specification of piecewise exponential survival time and hazard ratios
getPowerSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01,0.02,0.04),
hazardRatio = c(1.5, 1.8, 2), maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time as list and hazard ratios
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getPowerSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2),
maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time for both treatment arms
getPowerSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015,0.03,0.06), maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time as a list
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getPowerSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2),
maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specify effect size based on median survival times
median1 <- 5
median2 <- 3
getPowerSurvival(lambda1 = log(2) / median1, lambda2 = log(2) / median2,

maxNumberOfEvents = 40, maxNumberOfSubjects = 200, directionUpper = FALSE)

Specify effect size based on median survival times of Weibull distribtion with kappa = 2
median1 <- 5
median2 <- 3
kappa <- 2

30 getSampleSizeMeans

getPowerSurvival(lambda1 = log(2)^(1 / kappa) / median1,
lambda2 = log(2)^(1 / kappa) / median2, kappa = kappa,
maxNumberOfEvents = 40, maxNumberOfSubjects = 200, directionUpper = FALSE)

getSampleSizeMeans Get Sample Size Means

Description

Returns the sample size for testing means in one or two samples.

Usage

getSampleSizeMeans(design = NULL, ..., normalApproximation = FALSE,
meanRatio = FALSE, thetaH0 = ifelse(meanRatio, 1, 0),
alternative = C_ALTERNATIVE_DEFAULT, stDev = C_STDEV_DEFAULT,
groups = 2, allocationRatioPlanned = NA_real_)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, alpha, beta, twoSidedPower, and sided can be directly
entered as argument.

... Ensures that all arguments are be named and that a warning will be displayed if
unknown arguments are passed.

normalApproximation
If normalApproximation = TRUE is specified, the variance is assumed
to be known, default is FALSE, i.e., the calculations are performed with the t
distribution.

meanRatio If meanRatio = TRUE is specified, the sample size for one-sided testing of
H0: mu1/mu2 = thetaH0 is calculated, default is FALSE.

thetaH0 The null hypothesis value. For one-sided testing, a value != 0 (or a value != 1
for testing the mean ratio) can be specified, default is 0 or 1 for difference and
ratio testing, respectively.

alternative The alternative hypothesis value. This can be a vector of assumed alternatives,
default is seq(0.2,1,0.2).

stDev The standard deviation, default is 1. If meanRatio = TRUE is specified,
stDev defines the coefficient of variation sigma/mu2.

groups The number of treatment groups (1 or 2), default is 2.
allocationRatioPlanned

The planned allocation ratio for a two treatment groups design, default is 1. If
allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

getSampleSizeRates 31

Details

At given design the function calculates the stage-wise (non-cumulated) and maximum sample size
for testing means. In a two treatment groups design, additionally, an allocation ratio = n1/n2 can be
specified. A null hypothesis value thetaH0 != 0 for testing the difference of two means or thetaH0
!= 1 for testing the ratio of two means can be specified. Critical bounds and stopping for futility
bounds are provided at the effect scale (mean, mean difference, or mean ratio, respectively) for each
sample size calculation separately.

Value

Returns a TrialDesignPlanMeans object.

Examples

Calculate sample sizes in a fixed sample size parallel group design
with allocation ratio n1/n2 = 2 for a range of alternative values 1,...,5
with assumed standard deviation = 3.5; two-sided alpha = 0.05, power 1 - beta = 90%:
getSampleSizeMeans(alpha = 0.05, beta = 0.1, sided = 2, groups = 2,

alternative = seq(1, 5, 1), stDev = 3.5, allocationRatioPlanned = 2)

Calculate sample sizes in a three-stage Pocock paired comparison design testing
H0: mu = 2 for a range of alternative values 3,4,5 with assumed standard
deviation = 3.5; one-sided alpha = 0.05, power 1 - beta = 90%:
getSampleSizeMeans(getDesignGroupSequential(typeOfDesign = "P", alpha = 0.05,

sided = 1, beta = 0.1), groups = 1, thetaH0 = 2,
alternative = seq(3, 5, 1), stDev = 3.5)

getSampleSizeRates Get Sample Size Rates

Description

Returns the sample size for testing rates in one or two samples.

Usage

getSampleSizeRates(design = NULL, ..., normalApproximation = TRUE,
riskRatio = FALSE, thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = seq(0.4, 0.6, 0.1), pi2 = 0.2, groups = 2,
allocationRatioPlanned = NA_real_)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, alpha, beta, twoSidedPower, and sided can be directly
entered as argument.

... Ensures that all arguments are be named and that a warning will be displayed if
unknown arguments are passed.

32 getSampleSizeRates

normalApproximation
If normalApproximation = FALSE is specified, the sample size for the
case of one treatment group is calculated exactly using the binomial distribution,
default is TRUE.

riskRatio If riskRatio = TRUE is specified, the sample size for one-sided testing of
H0: pi1/pi2 = thetaH0 is calculated, default is FALSE.

thetaH0 The null hypothesis value. For one-sided testing, a value != 0 (or != 1 for testing
the risk ratio pi1/pi2) can be specified, default is 0 or 1 for difference and
ratio testing, respectively.

pi1 The assumed probability in the active treatment group if two treatment groups
are considered, or the alternative probability for a one treatment group design,
default is seq(0.4,0.6,0.1).

pi2 The assumed probability in the reference group if two treatment groups are con-
sidered, default is 0.2.

groups The number of treatment groups (1 or 2), default is 2.
allocationRatioPlanned

The planned allocation ratio for a two treatment groups design.
If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined, default is 1.

Details

At given design the function calculates the stage-wise (non-cumulated) and maximum sample size
for testing rates. In a two treatment groups design, additionally, an allocation ratio = n1/n2 can be
specified. If a null hypothesis value thetaH0 != 0 for testing the difference of two rates thetaH0 !=
1 for testing the risk ratio is specified, the sample size formula according to Farrington & Manning
(Statistics in Medicine, 1990) is used. Critical bounds and stopping for futility bounds are provided
at the effect scale (rate, rate difference, or rate ratio, respectively) for each sample size calculation
separately. For the two-sample case, the calculation here is performed at fixed pi2 as given as
argument in the function.

Value

Returns a TrialDesignPlanRates object.

Examples

Calculate the stage-wise sample sizes, maximum sample sizes, and the optimum
allocation ratios for a range of pi1 values when testing
H0: pi1 - pi2 = -0.1 within a two-stage O'Brien & Fleming design;
alpha = 0.05 one-sided, power 1- beta = 90%:
getSampleSizeRates(design = getDesignGroupSequential(kMax = 2, alpha = 0.05, beta = 0.1,

sided = 1), groups = 2, thetaH0 = -0.1, pi1 = seq(0.4, 0.55, 0.025),
pi2 = 0.4, allocationRatioPlanned = 0)

Calculate the stage-wise sample sizes, maximum sample sizes, and the optimum
allocation ratios for a range of pi1 values when testing
H0: pi1 / pi2 = 0.80 within a three-stage O'Brien & Fleming design;
alpha = 0.025 one-sided, power 1- beta = 90%:
getSampleSizeRates(getDesignGroupSequential(kMax = 3, alpha = 0.025, beta = 0.1,

sided = 1), groups = 2, riskRatio = TRUE, thetaH0 = 0.80, pi1 = seq(0.3,0.5,0.025),
pi2 = 0.3, allocationRatioPlanned = 0)

getSampleSizeSurvival 33

getSampleSizeSurvival
Get Sample Size Survival

Description

Returns the sample size for testing the hazard ratio in a two treatment groups survival design.

Usage

getSampleSizeSurvival(design = NULL, ...,
typeOfComputation = c("Schoenfeld", "Freedman", "HsiehFreedman"),
thetaH0 = C_THETA_H0_SURVIVAL_DEFAULT, pi1 = NA_real_,
pi2 = NA_real_, lambda1 = NA_real_, lambda2 = NA_real_,
kappa = 1, hazardRatio = NA_real_,
piecewiseSurvivalTime = NA_real_, allocationRatioPlanned = NA_real_,
accountForObservationTimes = TRUE, eventTime = C_EVENT_TIME_DEFAULT,
accrualTime = C_ACCRUAL_TIME_DEFAULT,
accrualIntensity = C_ACCRUAL_INTENSITY_DEFAULT,
followUpTime = NA_real_, maxNumberOfSubjects = NA_real_,
dropoutRate1 = C_DROP_OUT_RATE_1_DEFAULT,
dropoutRate2 = C_DROP_OUT_RATE_2_DEFAULT,
dropoutTime = C_DROP_OUT_TIME_DEFAULT)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, alpha, beta, twoSidedPower, and sided can be directly
entered as argument.

... Ensures that all arguments are be named and that a warning will be displayed if
unknown arguments are passed.

typeOfComputation
Three options are available: "Schoenfeld", "Freedman", "HsiehFreedman", the
default is "Schoenfeld". For details, see Hsieh (Statistics in Medicine, 1992).
For non-inferiority testing (i.e., thetaH0 != 1), only Schoenfelds formula can be
used

thetaH0 The null hypothesis value. The default value is 1. For one-sided testing, a bound
for testing H0: hazard ratio = thetaH0 != 1 can be specified.

pi1 The assumed event rate in the active treatment group, default is seq(0.4,0.6,0.1).
pi2 The assumed event rate in the control group, default is 0.2.
lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1

can also be used to define piecewise exponentially distributed survival times
(see details).

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details).

kappa The shape parameter of the Weibull distribution, default is 1. The Weibull distri-
bution cannot be used for the piecewise definition of the survival time distribu-
tion. Note that the parameters shape and scale in Weibull are equivalent
to kappa and 1 / lambda, respectively, in rpact.

34 getSampleSizeSurvival

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated.

piecewiseSurvivalTime
A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function (see details).

allocationRatioPlanned
The planned allocation ratio, default is 1. If allocationRatioPlanned = 0
is entered, the optimal allocation ratio yielding the smallest number of subjects
is determined.

accountForObservationTimes
If accountForObservationTimes = TRUE, the number of subjects is
calculated assuming specific accrual and follow-up time, default is TRUE (see
details).

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time intervals for the study, default is c(0,12) (see de-
tails).

accrualIntensity
A vector of accrual intensities, default is the relative intensity 0.1 (see details).

followUpTime The assumed (additional) follow-up time for the study, default is 6. The total
study duration is accrualTime + followUpTime.

maxNumberOfSubjects
If maxNumberOfSubjects > 0 is specified, the follow-up time for the re-
quired number of events is determined.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

Details

At given design the function calculates the number of events and an estimate for the necessary num-
ber of subjects for testing the hazard ratio in a survival design. It also calculates the time when the
required events are expected under the given assumptions (exponentially, piecewise exponentially,
or Weibull distributed survival times and constant or non-constant piecewise accrual). Additionally,
an allocation ratio = n1/n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

The formula of Kim & Tsiatis (Biometrics, 1990) is used to calculate the expected number of events
under the alternative (see also Lakatos & Lan, Statistics in Medicine, 1992). These formulas are
generalized to piecewise survival times and non-constant piecewise accrual over time.
If accountForObservationTimes = FALSE, only the event rates are used for the calcula-
tion of the maximum number of subjects.

piecewiseSurvivalTime The first element of this vector must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

accrualTime can also be used to define a non-constant accrual over time. For this, accrualTime
needs to be a vector that defines the accrual intervals and accrualIntensity needs to be spec-
ified. The first element of accrualTime must be equal to 0.

getSampleSizeSurvival 35

accrualTime can also be a list that combines the definition of the accrual time and accrual inten-
sity accrualIntensity (see below and examples for details). If the length of accrualTime
and the length of accrualIntensity are the same (i.e., the end of accrual is undefined),
maxNumberOfPatients > 0 needs to be specified and the end of accrual is calculated.

accrualIntensity needs to be defined if a vector of accrualTime is specified.
If the length of accrualTime and the length of accrualIntensity are the same (i.e., the
end of accrual is undefined), maxNumberOfPatients > 0 needs to be specified and the end
of accrual is calculated. In that case, accrualIntensity is given by the number of subjects per
time unit.
If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of
accrual is defined), maxNumberOfPatients is calculated. In that case, accrualIntensity
defines the intensity how subjects enter the trial. For example, accrualIntensity = c(1,2)
specifies that in the second accrual interval the intensity is doubled as compared to the first accrual
interval. The actual accrual intensity is calculated for the calculated maxNumberOfPatients.

accountForObservationTime can be selected as FALSE. In this case, the number of subjects
is calculated from the event probabilities only. This kind of computation does not account for the
specific accrual pattern and survival distribution.

Value

Returns a TrialDesignPlanSurvival object.

Examples

Fixed sample size trial with median survival 20 vs. 30 months in treatment and
reference group, respectively, alpha = 0.05 (two-sided), and power 1 - beta = 90%.
20 subjects will be recruited per month up to 400 subjects, i.e., accrual time is 20 months.
getSampleSizeSurvival(alpha = 0.05, sided = 2, beta = 0.1, lambda1 = log(2) / 20,

lambda2 = log(2) / 30, accrualTime = c(0,20), accrualIntensity = 20)

Fixed sample size with minimum required definitions, pi1 = c(0.4,0.5,0.6) and
pi2 = 0.2 at event time 12, accrual time 12 and follow-up time 6 as default,
only alpha = 0.01 is specified
getSampleSizeSurvival(alpha = 0.01)

Four stage O'Brien & Fleming group sequential design with minimum required
definitions, pi1 = c(0.4,0.5,0.6) and pi2 = 0.2 at event time 12,
accrual time 12 and follow-up time 6 as default
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 4))

For fixed sample design, determine necessary accrual time if 200 subjects and
30 subjects per time unit can be recruited
getSampleSizeSurvival(accrualTime = c(0), accrualIntensity = c(30),

maxNumberOfSubjects = 200)

Determine necessary accrual time if 200 subjects and if the first 6 time units
20 subjects per time unit can be recruited, then 30 subjects per time unit
getSampleSizeSurvival(accrualTime = c(0, 6), accrualIntensity = c(20, 30),

maxNumberOfSubjects = 200)

Determine maximum number of Subjects if the first 6 time units 20 subjects
per time unit can be recruited, and after 10 time units 30 subjects per time unit

36 getSampleSizeSurvival

getSampleSizeSurvival(accrualTime = c(0, 6, 10), accrualIntensity = c(20, 30))

Specify accrual time as a list
at <- list(

"0 - <6" = 20,
"6 - Inf" = 30)

getSampleSizeSurvival(accrualTime = at, maxNumberOfSubjects = 200)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30)

getSampleSizeSurvival(accrualTime = at)

Specify effect size for a two-stage group design with O'Brien & Fleming boundaries
Effect size is based on event rates at specified event time
needs to be specified because it should be shown that hazard ratio < 1
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

pi1 = 0.2, pi2 = 0.3, eventTime = 24)

Effect size is based on event rate at specified event
time for the reference group and hazard ratio
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

hazardRatio = 0.5, pi2 = 0.3, eventTime = 24)

Effect size is based on hazard rate for the reference group and hazard ratio
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

hazardRatio = 0.5, lambda2 = 0.02)

Specification of piecewise exponential survival time and hazard ratios
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
hazardRatio = c(1.5, 1.8, 2))

Specification of piecewise exponential survival time as a list and hazard ratios
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2))

Specification of piecewise exponential survival time for both treatment arms
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015, 0.03, 0.06))

Specification of piecewise exponential survival time as a list
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2))

Specify effect size based on median survival times
median1 <- 5

getSimulationMeans 37

median2 <- 3
getSampleSizeSurvival(lambda1 = log(2) / median1, lambda2 = log(2) / median2)

Specify effect size based on median survival times of Weibull distribtion with kappa = 2
median1 <- 5
median2 <- 3
kappa <- 2
getSampleSizeSurvival(lambda1 = log(2)^(1 / kappa) / median1,

lambda2 = log(2)^(1 / kappa) / median2, kappa = kappa)

Identify minimal and maximal required subjects to
reach the required events in spite of dropouts
getSampleSizeSurvival(accrualTime = c(0, 18), accrualIntensity = c(20, 30),

lambda2 = 0.4, lambda1 = 0.3, followUpTime = Inf, dropoutRate1 = 0.001,
dropoutRate2 = 0.005)

getSampleSizeSurvival(accrualTime = c(0, 18), accrualIntensity = c(20, 30),
lambda2 = 0.4, lambda1 = 0.3, followUpTime = 0, dropoutRate1 = 0.001,
dropoutRate2 = 0.005)

getSimulationMeans Get Simulation Means

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing means in a one or two treatment groups testing situation.

Usage

getSimulationMeans(design = NULL, ..., groups = 2L,
meanRatio = FALSE, thetaH0 = ifelse(meanRatio, 1, 0),
alternative = C_ALTERNATIVE_POWER_SIMULATION_DEFAULT,
stDev = C_STDEV_DEFAULT, plannedSubjects = NA_real_,
directionUpper = C_DIRECTION_UPPER_DEFAULT,
allocationRatioPlanned = NA_real_,
minNumberOfAdditionalSubjectsPerStage = NA_real_,
maxNumberOfAdditionalSubjectsPerStage = NA_real_,
conditionalPower = NA_real_, thetaH1 = NA_real_,
maxNumberOfIterations = C_MAX_SIMULATION_ITERATIONS_DEFAULT,
seed = NA_real_, calcSubjectsFunction = NULL)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, alpha, beta, and sided can be directly entered as argument.

... Ensures that all arguments are be named and that a warning will be displayed if
unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.

38 getSimulationMeans

meanRatio If meanRatio = TRUE is specified, the design characteristics for one-sided
testing of H0: mu1/mu2 = thetaH0 are simulated, default is FALSE.

thetaH0 The null hypothesis value. For one-sided testing, a value != 0 (or a value != 1
for testing the mean ratio) can be specified, default is 0 or 1 for difference and
ratio testing, respectively.

alternative The alternative hypothesis value. This can be a vector of assumed alternatives,
default is seq(0,1,0.2).

stDev The standard deviation under which the conditional power calculation is per-
formed, default is 1. If meanRatio = TRUE is specified, stDev defines the
coefficient of variation sigma/mu2.

plannedSubjects
plannedSubjects is a vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) subjects when the
interim stages are planned.

directionUpper
Specifies the direction of the alternative, only applicable for one-sided testing,
default is TRUE.

allocationRatioPlanned
The planned allocation ratio for a two treatment groups design, default is 1.

minNumberOfAdditionalSubjectsPerStage
When performing a data driven sample size recalculation, the vector with length
kMax minNumberOfAdditionalSubjectsPerStage determines the min-
imum number of subjects per stage (i.e., not cumulated), the first element is not
taken into account.

maxNumberOfAdditionalSubjectsPerStage
When performing a data driven sample size recalculation, the vector with length
kMax maxNumberOfAdditionalSubjectsPerStage determines the max-
imum number of subjects per stage (i.e., not cumulated), the first element is not
taken into account.

conditionalPower
The conditional power under which the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power cal-
culation is performed.

maxNumberOfIterations
The number of simulation iterations.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the
sample size recalculation. By default, sample size recalulation is performed with
conditional power with specified minNumberOfAdditionalSubjectsPerStage
and maxNumberOfAdditionalSubjectsPerStage (see details and ex-
amples).

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of subjects and parameter configuration. Additionally, an
allocation ratio = n1/n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

getSimulationMeans 39

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional Type I error
rate for specified testing situation. The function might depend on variables stage, meanRatio,
thetaH0, groups, plannedSubjects, sampleSizesPerStage, directionUpper,
allocationRatioPlanned, minNumberOfAdditionalSubjectsPerStage, maxNumberOfAdditionalSubjectsPerStage,
conditionalPower, conditionalCriticalValue, thetaStandardized. The func-
tion has to obtain the three-dots arument ’...’ (see examples).

Value

Returns a SimulationResultsMeans object.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median [range]; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to
disable the output of the aggregated simulated data.

Example 1:
simulationResults <- getSimulationMeans(plannedSubjects = 40)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <- getSimulationMeans(plannedSubjects = 40)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. alternative: The alternative hypothesis value.

4. numberOfSubjects: The number of subjects under consideration when the (interim) anal-
ysis takes place.

5. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

6. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

7. testStatistic: The test statistic that is used for the test decision, depends on which
design was chosen (group sequential, inverse normal, or Fishers combination test).

8. testStatisticsPerStage: The test statistic for each stage if only data from the con-
sidered stage is taken into account.

9. effectEstimate: Standardized overall simulated effect estimate.

10. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

11. conditionalPowerAchieved: The conditional power for the subsequent stage of the
trial for selected sample size and effect. The effect is either estimated from the data or can be
user defined with thetaH1.

40 getSimulationMeans

Examples

Fixed sample size with minimum required definitions,
alternative = c(0, 1, 2, 3, 4), standard deviation = 5
getSimulationMeans(getDesignGroupSequential(), alternative = 40,

stDev = 50, plannedSubjects = c(20, 40, 60), thetaH1 = 60,
maxNumberOfIterations = 50)

Increase number of simulation iterations and compare results
with power calculator using normal approximation
getSimulationMeans(alternative = 0:4, stDev = 5,

plannedSubjects = 40, maxNumberOfIterations = 50)
getPowerMeans(alternative = 0:4, stDev = 5,

maxNumberOfSubjects = 40, normalApproximation = TRUE)

Do the same for a three-stage O'Brien&Fleming inverse
normal group sequential design with non-binding futility stops
designIN <- getDesignInverseNormal(typeOfDesign = "OF", futilityBounds = c(0, 0))
x <- getSimulationMeans(designIN, alternative = c(0:4), stDev = 5,

plannedSubjects = c(20, 40, 60), maxNumberOfIterations = 1000)
getPowerMeans(designIN, alternative = 0:4, stDev = 5,

maxNumberOfSubjects = 60, normalApproximation = TRUE)

Assess power and average sample size if a sample size increase is foreseen
at conditional power 80% for each subsequent stage based on observed overall
effect and specified minNumberOfAdditionalSubjectsPerStage and
maxNumberOfAdditionalSubjectsPerStage
getSimulationMeans(designIN, alternative = 0:4, stDev = 5,

plannedSubjects = c(20, 40, 60),
minNumberOfAdditionalSubjectsPerStage = c(20, 20, 20),
maxNumberOfAdditionalSubjectsPerStage = c(80, 80, 80),
conditionalPower = 0.8,maxNumberOfIterations = 50)

Do the same under the assumption that a sample size increase only takes
place at the first interim. The sample size for the third stage is set equal
to the second stage sample size.
mySampleSizeCalculationFunction <- function(..., stage,

minNumberOfAdditionalSubjectsPerStage,
maxNumberOfAdditionalSubjectsPerStage,
sampleSizesPerStage,
conditionalPower,
conditionalCriticalValue,
thetaStandardized) {

if (stage == 2) {
stageSubjects <- 4 * (max(0, conditionalCriticalValue +

stats::qnorm(conditionalPower)))^2 / (max(1e-12, thetaStandardized))^2
stageSubjects <- min(max(minNumberOfAdditionalSubjectsPerStage[stage],

stageSubjects), maxNumberOfAdditionalSubjectsPerStage[stage])
} else {

stageSubjects <- sampleSizesPerStage[stage - 1]
}
return(stageSubjects)

}
getSimulationMeans(designIN, alternative = 2:4, stDev = 5,

getSimulationRates 41

plannedSubjects = c(20, 40, 60),
minNumberOfAdditionalSubjectsPerStage = c(20, 20, 2),
maxNumberOfAdditionalSubjectsPerStage = c(40, 160, 16),
conditionalPower = 0.8,
calcSubjectsFunction = mySampleSizeCalculationFunction,
maxNumberOfIterations = 50)

getSimulationRates Get Simulation Rates

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing rates in a one or two treatment groups testing situation.

Usage

getSimulationRates(design = NULL, ..., groups = 2L,
riskRatio = FALSE, thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = C_PI_1_DEFAULT, pi2 = NA_real_, plannedSubjects = NA_real_,
directionUpper = C_DIRECTION_UPPER_DEFAULT,
allocationRatioPlanned = NA_real_,
minNumberOfAdditionalSubjectsPerStage = NA_real_,
maxNumberOfAdditionalSubjectsPerStage = NA_real_,
conditionalPower = NA_real_, pi1H1 = NA_real_, pi2H1 = 0.2,
maxNumberOfIterations = C_MAX_SIMULATION_ITERATIONS_DEFAULT,
seed = NA_real_, calcSubjectsFunction = NULL)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, alpha, beta, and sided can be directly entered as argument.

... Ensures that all arguments are be named and that a warning will be displayed if
unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.

riskRatio If riskRatio = TRUE is specified, the design characteristics for one-sided
testing of H0: pi1/pi2 = thetaH0 are simulated, default is FALSE.

thetaH0 The null hypothesis value. For one-sided testing, a value != 0 (or a value != 1
for testing the mean ratio) can be specified, default is 0 or 1 for difference and
ratio testing, respectively.

pi1 The assumed probability in the active treatment group if two treatment groups
are considered, or the alternative probability for a one treatment group design,
default is seq(0.2,0.5,0.1).

pi2 The assumed probability in the reference group if two treatment groups are con-
sidered, default is 0.2.

42 getSimulationRates

plannedSubjects
plannedSubjects is a vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) subjects when the
interim stages are planned.

directionUpper
Specifies the direction of the alternative, only applicable for one-sided testing,
default is TRUE.

allocationRatioPlanned
The planned allocation ratio for a two treatment groups design, default is 1.

minNumberOfAdditionalSubjectsPerStage
When performing a data driven sample size recalculation, the vector with length
kMax minNumberOfAdditionalSubjectsPerStage determines the min-
imum number of subjects per stage (i.e., not cumulated), the first element is not
taken into account.

maxNumberOfAdditionalSubjectsPerStage
When performing a data driven sample size recalculation, the vector with length
kMax maxNumberOfAdditionalSubjectsPerStage determines the max-
imum number of subjects per stage (i.e., not cumulated), the first element is not
taken into account.

conditionalPower
The conditional power under which the sample size recalculation is performed.

pi1H1 If specified, the assumed probability in the active treatment group if two treat-
ment groups are considered, or the assumed probability for a one treatment
group design, for which the conditional power was calculated.

pi2H1 If specified, the assumed probability in the reference group if two treatment
groups are considered, for which the conditional power was calculated, default
is 0.2.

maxNumberOfIterations
The number of simulation iterations.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the
sample size recalculation. By default, sample size recalulation is performed with
conditional power and specified minNumberOfAdditionalSubjectsPerStage
and maxNumberOfAdditionalSubjectsPerStage (see details and ex-
amples).

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of subjects and parameter configuration. Additionally, an
allocation ratio = n1/n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional Type I error
rate for specified testing situation. The function might depend on variables stage, riskRatio,
thetaH0, groups, plannedSubjects, directionUpper, allocationRatioPlanned,
minNumberOfAdditionalSubjectsPerStage, maxNumberOfAdditionalSubjectsPerStage,
sampleSizesPerStage, conditionalPower, conditionalCriticalValue, overallRate,
farringtonManningValue1, and farringtonManningValue2. The function has to ob-
tain the three-dots arument ’...’ (see examples).

getSimulationRates 43

Value

Returns a SimulationResultsRates object.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median [range]; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to
disable the output of the aggregated simulated data.

Example 1:
simulationResults <- getSimulationRates(plannedSubjects = 40)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <- getSimulationRates(plannedSubjects = 40)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. pi1: The assumed or derived event rate in the treatment group (if available).

4. pi2: The assumed or derived event rate in the control group (if available).

5. numberOfSubjects: The number of subjects under consideration when the (interim) anal-
ysis takes place.

6. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

7. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

8. testStatistic: The test statistic that is used for the test decision, depends on which
design was chosen (group sequential, inverse normal, or Fisher combination test)’

9. testStatisticsPerStage: The test statistic for each stage if only data from the con-
sidered stage is taken into account.

10. overallRates1: The overall rate in treatment group 1.

11. overallRates2: The overall rate in treatment group 2.

12. stagewiseRates1: The stagewise rate in treatment group 1.

13. stagewiseRates2: The stagewise rate in treatment group 2.

14. sampleSizesPerStage1: The stagewise sample size in treatment group 1.

15. sampleSizesPerStage2: The stagewise sample size in treatment group 2.

16. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

17. conditionalPowerAchieved: The conditional power for the subsequent stage of the
trial for selected sample size and effect. The effect is either estimated from the data or can be
user defined with pi1H1 and pi2H1.

44 getSimulationRates

Examples

Fixed sample size with minimum required definitions, pi1 = (0.3,0.4,0.5, 0.6) and pi2 = 0.3
getSimulationRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = 120, maxNumberOfIterations = 50)

Increase number of simulation iterations and compare results with power calculator
getSimulationRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = 120, maxNumberOfIterations = 50)
getPowerRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, maxNumberOfSubjects = 120)

Do the same for a two-stage Pocock inverse normal group sequential
design with non-binding futility stops
designIN <- getDesignInverseNormal(typeOfDesign = "P", futilityBounds = c(0))
getSimulationRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = c(40, 80), maxNumberOfIterations = 50)
getPowerRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, maxNumberOfSubjects = 80)

Assess power and average sample size if a sample size reassessment is
foreseen at conditional power 80% for the subsequent stage (decrease and increase)
based on observed overall rates and specified minNumberOfAdditionalSubjectsPerStage
and maxNumberOfAdditionalSubjectsPerStage

Do the same under the assumption that a sample size increase only takes place
if the rate difference exceeds the value 0.1 at interim. For this, the sample
size recalculation method needs to be redefined:
mySampleSizeCalculationFunction <- function(..., stage,

plannedSubjects,
minNumberOfAdditionalSubjectsPerStage,
maxNumberOfAdditionalSubjectsPerStage,
conditionalPower,
conditionalCriticalValue,
overallRate) {

if (overallRate[1] - overallRate[2] < 0.1) {
return(plannedSubjects[stage] - plannedSubjects[stage - 1])

} else {
rateUnderH0 <- (overallRate[1] + overallRate[2]) / 2
stageSubjects <- 2 * (max(0, conditionalCriticalValue *

sqrt(2 * rateUnderH0 * (1 - rateUnderH0)) +
stats::qnorm(conditionalPower) * sqrt(overallRate[1] *
(1 - overallRate[1]) + overallRate[2] * (1 - overallRate[2]))))^2 /
(max(1e-12,(overallRate[1] - overallRate[2])))^2

stageSubjects <- ceiling(min(max(
minNumberOfAdditionalSubjectsPerStage[stage],
stageSubjects), maxNumberOfAdditionalSubjectsPerStage[stage]))

return(stageSubjects)
}

}
getSimulationRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = c(40, 80), minNumberOfAdditionalSubjectsPerStage = c(40, 20),
maxNumberOfAdditionalSubjectsPerStage = c(40, 160), conditionalPower = 0.8,
calcSubjectsFunction = mySampleSizeCalculationFunction, maxNumberOfIterations = 50)

getSimulationSurvival 45

getSimulationSurvival
Get Simulation Survival

Description

Returns the analysis times, power, stopping probabilities, conditional power, and expected sample
size for testing the hazard ratio in a two treatment groups survival design.

Usage

getSimulationSurvival(design = NULL, ...,
thetaH0 = C_THETA_H0_SURVIVAL_DEFAULT,
directionUpper = C_DIRECTION_UPPER_DEFAULT, pi1 = NA_real_,
pi2 = NA_real_, lambda1 = NA_real_, lambda2 = NA_real_,
hazardRatio = NA_real_, kappa = 1,
piecewiseSurvivalTime = NA_real_,
allocation1 = C_ALLOCATION_1_DEFAULT,
allocation2 = C_ALLOCATION_2_DEFAULT,
eventTime = C_EVENT_TIME_DEFAULT,
accrualTime = C_ACCRUAL_TIME_DEFAULT,
accrualIntensity = C_ACCRUAL_INTENSITY_DEFAULT,
dropoutRate1 = C_DROP_OUT_RATE_1_DEFAULT,
dropoutRate2 = C_DROP_OUT_RATE_2_DEFAULT,
dropoutTime = C_DROP_OUT_TIME_DEFAULT,
maxNumberOfSubjects = NA_real_, plannedEvents = NA_real_,
minNumberOfAdditionalEventsPerStage = NA_real_,
maxNumberOfAdditionalEventsPerStage = NA_real_,
conditionalPower = NA_real_, thetaH1 = NA_real_,
maxNumberOfIterations = C_MAX_SIMULATION_ITERATIONS_DEFAULT,
maxNumberOfRawDatasetsPerStage = 0,
longTimeSimulationAllowed = FALSE, seed = NA_real_)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, alpha, beta, twoSidedPower, and sided can be directly
entered as argument.

... Ensures that all arguments are be named and that a warning will be displayed if
unknown arguments are passed.

thetaH0 The null hypothesis value. The default value is 1. For one-sided testing, a bound
for testing H0: hazard ratio = thetaH0 != 1 can be specified.

directionUpper
Specifies the direction of the alternative, only applicable for one-sided testing,
default is TRUE.

pi1 The assumed event rate in the treatment group, default is seq(0.2,0.5,0.1).

pi2 The assumed event rate in the control group, default is 0.2.

46 getSimulationSurvival

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times
(see details).

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details).

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated.

kappa The scale parameter of the Weibull distribution, default is 1. The Weibull distri-
bution cannot be used for the piecewise definition of the survival time distribu-
tion. Note that the parameters shape and scale in Weibull are equivalent
to kappa and 1 / lambda, respectively, in rpact.

piecewiseSurvivalTime
A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function (see details).

allocation1 The number how many subjects are assigned to treatment 1 in a subsequent
order, default is 1

allocation2 The number how many subjects are assigned to treatment 2 in a subsequent
order, default is 1

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time for the study, default is 12 (see getAccrualTime).
accrualIntensity

A vector of accrual intensities, default is the relative intensity 0.1 (see getAccrualTime).

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

maxNumberOfSubjects
maxNumberOfSubjects > 0 needs to be specified. If accrual time and
accrual intensity is specified, this will be calculated.

plannedEvents
plannedEvents is a vector of length kMax (the number of stages of the de-
sign) with increasing numbers that determines the number of cumulated (over-
all) events when the interim stages are planned.

minNumberOfAdditionalEventsPerStage
When performing a data driven sample size recalculation, the vector with length
kMax minNumberOfAdditionalEventsPerStage determines the min-
imum number of events per stage (i.e., not cumulated), the first element is not
taken into account.

maxNumberOfAdditionalEventsPerStage
When performing a data driven sample size recalculation, the vector with length
kMax maxNumberOfAdditionalEventsPerStage determines the max-
imum number of events per stage (i.e., not cumulated), the first element is not
taken into account.

conditionalPower
The conditional power under which the sample size recalculation is performed.

thetaH1 If specified, the value of the hazard ratio under which the conditional power
calculation is performed.

getSimulationSurvival 47

maxNumberOfIterations
The number of simulation iterations.

maxNumberOfRawDatasetsPerStage
The number of raw datasets per stage that shall be extracted and saved as data.frame,
default is 0. getRawData can be used to get the extracted raw data from the
object.

longTimeSimulationAllowed
Logical that indicates whether long time simulations that consumes more than
30 seconds are allowed or not, default is FALSE.

seed The seed to reproduce the simulation, default is a random seed.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of events, number of subjects, and parameter configura-
tion. It also simulates the time when the required events are expected under the given assumptions
(exponentially, piecewise exponentially, or Weibull distributed survival times and constant or non-
constant piecewise accrual). Additionally, integers allocation1 and allocation2 can be
specified that determine the number allocated to treatment group 1 and treatment group 2, respec-
tively.

The formula of Kim & Tsiatis (Biometrics, 1990) is used to calculated the expected number of
events under the alternative (see also Lakatos & Lan, Statistics in Medicine, 1992). These formulas
are generalized to piecewise survival times and non-constant piecewise accrual over time.

piecewiseSurvivalTime The first element of this vector must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

Value

Returns a SimulationResultsSurvival object.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median [range]; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to
disable the output of the aggregated simulated data.

Example 1:
simulationResults <- getSimulationSurvival(maxNumberOfSubjects = 100, plannedEvents = 30)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <- getSimulationSurvival(maxNumberOfSubjects = 100, plannedEvents = 30)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

48 getSimulationSurvival

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. pi1: The assumed or derived event rate in the treatment group.

4. pi2: The assumed or derived event rate in the control group.

5. hazardRatio: The hazard ratio under consideration (if available).

6. analysisTime: The analysis time.

7. numberOfSubjects: The number of subjects under consideration when the (interim) anal-
ysis takes place.

8. eventsPerStage1: The observed number of events per stage in treatment group 1.

9. eventsPerStage2: The observed number of events per stage in treatment group 2.

10. eventsPerStage: The observed number of events per stage in both treatment groups.

11. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

12. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

13. eventsNotAchieved: 1 if number of events could not be reached with observed number
of subjects, 0 otherwise.

14. testStatistic: The test statistic that is used for the test decision, depends on which
design was chosen (group sequential, inverse normal, or Fisher combination test)’

15. logRankStatistic: Z-score statistic which corresponds to a one-sided log-rank test at
considered stage.

16. hazardRatioEstimateLR: The estimated hazard ratio, derived from the log-rank statis-
tic.

17. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

18. conditionalPowerAchieved: The conditional power for the subsequent stage of the
trial for selected sample size and effect. The effect is either estimated from the data or can be
user defined with thetaH1.

Raw Data

getRawData can be used to get the simulated raw data from the object as data.frame. Note
that getSimulationSurvivalmust called before with maxNumberOfRawDatasetsPerStage
> 0. The data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stopStage: The stage of stopping.

3. subjectId: The subject id (increasing number 1, 2, 3, ...)

4. accrualTime: The accrual time, i.e., the time when the subject entered the trial.

5. treatmentGroup: The treatment group number (1 or 2).

6. survivalTime: The survival time of the subject.

7. dropoutTime: The dropout time of the subject (may be NA).

8. observationTime: The specific observation time.

9. timeUnderObservation: The time under observation is defined as follows:
if (event == TRUE)
timeUnderObservation <- survivalTime;
else if (dropoutEvent == TRUE)

getSimulationSurvival 49

timeUnderObservation <- dropoutTime;
else
timeUnderObservation <- observationTime - accrualTime;

10. event: TRUE if an event occurred; FALSE otherwise.

11. dropoutEvent: TRUE if an dropout event occurred; FALSE otherwise.

Examples

Fixed sample size with minimum required definitions, pi1 = (0.3,0.4,0.5,0.6) and
pi2 = 0.3 at event time 12, and accrual time 24
getSimulationSurvival(pi1 = seq(0.3,0.6,0.1), pi2 = 0.3, eventTime = 12,

accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

Increase number of simulation iterations
getSimulationSurvival(pi1 = seq(0.3,0.6,0.1), pi2 = 0.3, eventTime = 12,

accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

Determine necessary accrual time with default settings if 200 subjects and
30 subjects per time unit can be recruited
getSimulationSurvival(plannedEvents = 40, accrualTime = 0,

accrualIntensity = 30, maxNumberOfSubjects = 200, maxNumberOfIterations = 50)

Determine necessary accrual time with default settings if 200 subjects and
if the first 6 time units 20 subjects per time unit can be recruited,
then 30 subjects per time unit
getSimulationSurvival(plannedEvents = 40, accrualTime = c(0, 6),

accrualIntensity = c(20, 30), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

Determine maximum number of Subjects with default settings if the first
6 time units 20 subjects per time unit can be recruited, and after
10 time units 30 subjects per time unit
getSimulationSurvival(plannedEvents = 40, accrualTime = c(0, 6, 10),

accrualIntensity = c(20, 30), maxNumberOfIterations = 50)

Specify accrual time as a list
at <- list(

"0 - <6" = 20,
"6 - Inf" = 30)

getSimulationSurvival(plannedEvents = 40, accrualTime = at,
maxNumberOfSubjects = 200, maxNumberOfIterations = 50)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30)

getSimulationSurvival(plannedEvents = 40, accrualTime = at, maxNumberOfIterations = 50)

Specify effect size for a two-stage group sequential design with O'Brien & Fleming boundaries.
Effect size is based on event rates at specified event time, directionUpper = FALSE

50 getSimulationSurvival

needs to be specified because it should be shown that hazard ratio < 1
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

pi1 = 0.2, pi2 = 0.3, eventTime = 24, plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, directionUpper = FALSE, maxNumberOfIterations = 50)

As above, but with a three-stage O'Brien and Flemming design with
specified information rates, note that planned events consists of integer values
d3 <- getDesignGroupSequential(informationRates = c(0.4, 0.7, 1))
getSimulationSurvival(design = d3, pi1 = 0.2, pi2 = 0.3, eventTime = 24,

plannedEvents = round(d3$informationRates * 40),
maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50)

Effect size is based on event rate at specified event time for the reference group and
hazard ratio, directionUpper = FALSE needs to be specified because it should be shown
that hazard ratio < 1
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2), hazardRatio = 0.5,

pi2 = 0.3, eventTime = 24, plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
directionUpper = FALSE, maxNumberOfIterations = 50)

Effect size is based on hazard rate for the reference group and
hazard ratio, directionUpper = FALSE needs to be specified because
it should be shown that hazard ratio < 1
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

hazardRatio = 0.5, lambda2 = 0.02, plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50)

Specification of piecewise exponential survival time and hazard ratios,
note that in getSimulationSurvival only on hazard ratio is used
in the case that the survival time is piecewise expoential
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
hazardRatio = 1.5, plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

pws <- list(
"0 - <5" = 0.01,

"5 - <10" = 0.02,
">=10" = 0.04)

getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2),
plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

Specification of piecewise exponential survival time for both treatment arms
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015, 0.03, 0.06), plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, maxNumberOfIterations = 50)

Specification of piecewise exponential survival time as a list,
note that in getSimulationSurvival only on hazard ratio
(not a vector) can be used
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,

getSimulationSurvival 51

">=10" = 0.04)
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = pws, hazardRatio = 1.5,
plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50)

Specification of piecewise exponential survival time and delayed effect
(response after 5 time units)
getSimulationSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.01, 0.02, 0.06), plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, maxNumberOfIterations = 50)

Specify effect size based on median survival times
median1 <- 5
median2 <- 3
getSimulationSurvival(lambda1 = log(2) / median1,

lambda2 = log(2) / median2, plannedEvents = 40,
maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50)

Specify effect size based on median survival
times of Weibull distribtion with kappa = 2
median1 <- 5
median2 <- 3
kappa <- 2
getSimulationSurvival(lambda1 = log(2)^(1 / kappa) / median1,

lambda2 = log(2)^(1 / kappa) / median2, kappa = kappa,
plannedEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE, maxNumberOfIterations = 50)

Perform recalculation of number of events based on conditional power for a
three-stage design with inverse normal combination test, where the conditional power
is calculated under the specified effect size thetaH1 = 1.3 and up to a four-fold
increase in originally planned sample size (number of events) is allowed
Note that the first value in minNumberOfAdditionalEventsPerStage and
maxNumberOfAdditionalEventsPerStage is arbitrary, i.e., it has no effect.
dIN <- getDesignInverseNormal(informationRates = c(0.4, 0.7, 1))

resultsWithSSR1 <- getSimulationSurvival(design = dIN,
hazardRatio = seq(1, 1.6, 0.1),
pi2 = 0.3, conditionalPower = 0.8, thetaH1 = 1.3,
plannedEvents = c(58, 102, 146),

minNumberOfAdditionalEventsPerStage = c(58, 44, 44),
maxNumberOfAdditionalEventsPerStage = 4 * c(58, 44, 44),

maxNumberOfSubjects = 800, maxNumberOfIterations = 50)
resultsWithSSR1

If thetaH1 is unspecified, the observed hazard ratio estimate
(calculated from the log-rank statistic) is used for performing the
recalculation of the number of events
resultsWithSSR2 <- getSimulationSurvival(design = dIN,

hazardRatio = seq(1, 1.6, 0.1),
pi2 = 0.3, conditionalPower = 0.8, plannedEvents = c(58, 102, 146),
minNumberOfAdditionalEventsPerStage = c(58, 44, 44),
maxNumberOfAdditionalEventsPerStage = 4 * c(58, 44, 44),

maxNumberOfSubjects = 800, maxNumberOfIterations = 50)

52 getStageResults

resultsWithSSR2

Compare it with design without event size recalculation
resultsWithoutSSR <- getSimulationSurvival(design = dIN,

hazardRatio = seq(1, 1.6, 0.1), pi2 = 0.3,
plannedEvents = c(58, 102, 145), maxNumberOfSubjects = 800,

maxNumberOfIterations = 50)
resultsWithoutSSR$overallReject
resultsWithSSR1$overallReject
resultsWithSSR2$overallReject

Confirm that event size racalcuation increases the Type I error rate,
i.e., you have to use the combination test
dGS <- getDesignGroupSequential(informationRates = c(0.4, 0.7, 1))
resultsWithSSRGS <- getSimulationSurvival(design = dGS, hazardRatio = seq(1),

pi2 = 0.3, conditionalPower = 0.8, plannedEvents = c(58, 102, 145),
minNumberOfAdditionalEventsPerStage = c(58, 44, 44),
maxNumberOfAdditionalEventsPerStage = 4 * c(58, 44, 44),

maxNumberOfSubjects = 800, maxNumberOfIterations = 50)
resultsWithSSRGS$overallReject

Set seed to get reproduceable results

identical(
getSimulationSurvival(plannedEvents = 40, maxNumberOfSubjects = 200,

seed = 99)$analysisTime,
getSimulationSurvival(plannedEvents = 40, maxNumberOfSubjects = 200,

seed = 99)$analysisTime
)

getStageResults Get Stage Results

Description

Returns summary statistics and p-values for a given data set and a given design.

Usage

getStageResults(design, dataInput, ...)

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival. See
getDataset.

... Further (optional) arguments to be passed:

stage The stage number (optional). Default: total number of existing stages in
the data input.

plot.AnalysisResults 53

thetaH0 The null hypothesis value, default is 0 for the normal and the binary
case, it is 1 for the survival case. For testing a rate in one sample, a value
thetaH0 in (0, 1) has to be specified for defining the null hypothesis H0: pi
= thetaH0.
For non-inferiority designs, this is the non-inferiority bound.

thetaH1 and assumedStDev or pi1, pi2 The assumed effect size or assumed
rates to calculate the conditional power. Depending on the type of dataset,
either thetaH1 (means and survival) or pi1, pi2 (rates) can be specified.
Additionally, if testing means is specified, an assumed standard deviation
can be specified, default is 1.

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if
normalApproximation = FALSE is specified, the binomial test (one
sample) or the test of Fisher (two samples) is used for calculating the p-
values. In the survival setting,
normalApproximation = FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
equalVariances = TRUE.

directionUpper The direction of one-sided testing. Default is directionUpper = TRUE
which means that larger values of the test statistics yield smaller p-values.

Details

Calculates and returns the stage results of the specified design and data input at the specified stage.

Value

Returns a StageResults object.

Examples

design <- getDesignInverseNormal()
dataRates <- getDataset(

n1 = c(10,10),
n2 = c(20,20),
events1 = c(8,10),
events2 = c(10,16))

getStageResults(design, dataRates)

plot.AnalysisResults
Analysis Results Plotting

Description

Plots the conditional power together with the likelihood function.

54 plot.AnalysisResults

Usage

S3 method for class 'AnalysisResults'
plot(x, y, ..., type = 1L,

nPlanned = NA_real_, stage = x$getNumberOfStages(),
allocationRatioPlanned = NA_real_, main = NA_character_,
xlab = NA_character_, ylab = NA_character_, legendTitle = "",
palette = "Set1", legendPosition = NA_integer_, showSource = FALSE)

Arguments

x The analysis results at given stage, obtained from getAnalysisResults.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional ggplot2 arguments. Furthermore the following arguments can be
defined:

• thetaRange: A range of assumed effect sizes if testing means or a sur-
vival design was specified. Additionally, if testing means was selected, an
assumed standard deviation can be specified (default is 1).

• piRange: A range of assumed rates pi1 to calculate the conditional power.
Additionally, if a two-sample comparison was selected, pi2 can be specified
(default is the value from getAnalysisResults).

• directionUpper: The direction of one-sided testing. Default is directionUpper = TRUE
which means that larger values of the test statistics yield smaller p-values.

• thetaH0: The null hypothesis value, default is 0 for the normal and the
binary case, it is 1 for the survival case. For testing a rate in one sample,
a value thetaH0 in (0,1) has to be specified for defining the null hypothesis
H0: pi = thetaH0.

type The plot type (default = 1). Note that at the moment only one type (the condi-
tional power plot) is available.

nPlanned The sample size planned for the subsequent stages. It should be a vector with
length equal to the remaining stages and is the overall sample size in the two
treatment groups if two groups are considered.

stage The stage number (optional). Default: total number of existing stages in the data
input used to create the analysis results.

allocationRatioPlanned
The allocation ratio n1/n2 for two treatment groups planned for the subsequent
stages, the default value is 1.

main The main title, default is "Dataset".

xlab The x-axis label, default is "Stage".

ylab The y-axis label.

legendTitle The legend title, default is "".

palette The palette, default is "Set1".
legendPosition

The position of the legend. By default (NA_integer_) the algorithm tries
to find a suitable position. Choose one of the following values to specify the
position manually:

• 0: legend position outside plot

plot.Dataset 55

• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with plot.

Details

The conditional power is calculated only if effect size and sample size is specified.

Examples

design <- getDesignGroupSequential(kMax = 2)

dataExample <- getDataset(
n = c(20, 30),

means = c(50, 51),
stDevs = c(130, 140)

)

result <- getAnalysisResults(design = design,
dataInput = dataExample, thetaH0 = 20,
nPlanned = c(30), thetaH1 = 1.5, stage = 1)

if (require(ggplot2)) plot(result, thetaRange = c(0, 100))

plot.Dataset Dataset Plotting

Description

Plots a dataset.

Usage

S3 method for class 'Dataset'
plot(x, y, ..., main = "Dataset", xlab = "Stage",

ylab = NA_character_, legendTitle = "Group", palette = "Set1",
showSource = FALSE)

Arguments

x The Dataset object to plot.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

56 plot.SimulationResults

... Optional ggplot2 arguments.
main The main title, default is "Dataset".
xlab The x-axis label, default is "Stage".
ylab The y-axis label.
legendTitle The legend title, default is "Group".
palette The palette, default is "Set1".
showSource If TRUE, the parameter names of the object will be printed which were used to

create the plot; that may be, e.g., useful to check the values or to create own
plots with plot.

Details

Generic function to plot all kinds of datasets.

Examples

Plot a dataset of means
dataExample <- getDataset(

n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3))

if (require(ggplot2)) plot(dataExample, main = "Comparison of means")

Plot a dataset of rates
dataExample <- getDataset(

n1 = c(8, 10, 9, 11),
n2 = c(11, 13, 12, 13),
events1 = c(3, 5, 5, 6),
events2 = c(8, 10, 12, 12)

)

if (require(ggplot2)) plot(dataExample, main = "Comparison of rates")

plot.SimulationResults
Simulation Results Plotting

Description

Plots simulation results.

Usage

S3 method for class 'SimulationResults'
plot(x, y, main = NA_character_,

xlab = NA_character_, ylab = NA_character_, type = 1,
palette = "Set1", theta = seq(-1, 1, 0.01), plotPointsEnabled = NA,
legendPosition = NA_integer_, showSource = FALSE, ...)

plot.SimulationResults 57

Arguments

x The simulation results, obtained from
getSimulationSurvival.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

main The main title.
xlab The x-axis label.
ylab The y-axis label.
type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 2: creates a ’Boundaries Effect Scale’ plot
• 3: creates a ’Boundaries p Values Scale’ plot
• 4: creates a ’Type One Error Spending’ plot
• 5: creates a ’Sample Size’ or ’Overall Power and Early Stopping’ plot
• 6: creates a ’Number of Events’ or ’Sample Size’ plot
• 7: creates an ’Overall Power’ plot
• 8: creates an ’Overall Early Stopping’ plot
• 9: creates an ’Expected Number of Events’ or ’Expected Sample Size’ plot
• 10: creates a ’Study Duration’ plot
• 11: creates an ’Expected Number of Subjects’ plot
• 12: creates an ’Analysis Times’ plot
• 13: creates a ’Cumulative Distribution Function’ plot
• 14: creates a ’Survival Function’ plot

palette The palette, default is "Set1".
theta A vector of theta values.
plotPointsEnabled

If TRUE, additional points will be plotted.
legendPosition

The position of the legend. By default (NA_integer_) the algorithm tries
to find a suitable position. Choose one of the following values to specify the
position manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with plot.

... Optional ggplot2 arguments.

Details

Generic function to plot all kinds of simulation results.

58 plot.StageResults

plot.StageResults Stage Results Plotting

Description

Plots the conditional power together with the likelihood function.

Usage

S3 method for class 'StageResults'
plot(x, y, ..., type = 1L, nPlanned,

stage = x$getNumberOfStages(), allocationRatioPlanned = NA_real_,
main = NA_character_, xlab = NA_character_, ylab = NA_character_,
legendTitle = NA_character_, palette = "Set1",
legendPosition = NA_integer_, showSource = FALSE)

Arguments

x The stage results at given stage, obtained from getStageResults or getAnalysisResults.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional ggplot2 arguments. Furthermore the following arguments can be
defined:

• thetaRange: A range of assumed effect sizes if testing means or a sur-
vival design was specified. Additionally, if testing means was selected, an
assumed standard deviation can be specified (default is 1).

• piRange: A range of assumed rates pi1 to calculate the conditional power.
Additionally, if a two-sample comparison was selected, pi2 can be specified
(default is the value from getAnalysisResults).

• directionUpper: The direction of one-sided testing. Default is directionUpper = TRUE
which means that larger values of the test statistics yield smaller p-values.

• thetaH0: The null hypothesis value, default is 0 for the normal and the
binary case, it is 1 for the survival case. For testing a rate in one sample,
a value thetaH0 in (0,1) has to be specified for defining the null hypothesis
H0: pi = thetaH0.

type The plot type (default = 1). Note that at the moment only one type (the condi-
tional power plot) is available.

nPlanned The sample size planned for the subsequent stages. It should be a vector with
length equal to the remaining stages and is the overall sample size in the two
treatment groups if two groups are considered.

stage The stage number (optional). Default: total number of existing stages in the data
input used to create the stage results.

allocationRatioPlanned
The allocation ratio for two treatment groups planned for the subsequent stages,
the default value is 1.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

plot.TrialDesign 59

legendTitle The legend title.

palette The palette, default is "Set1".

legendPosition
The position of the legend. By default (NA_integer_) the algorithm tries
to find a suitable position. Choose one of the following values to specify the
position manually:

• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with plot.

Details

Generic function to plot all kinds of stage results. The conditional power is calculated only if effect
size and sample size is specified.

Examples

design <- getDesignGroupSequential(kMax = 4, alpha = 0.025,
informationRates = c(0.2, 0.5, 0.8, 1),
typeOfDesign = "WT", deltaWT = 0.25)

dataExample <- getDataset(
n = c(20, 30, 30),
means = c(50, 51, 55),
stDevs = c(130, 140, 120)

)

stageResults <- getStageResults(design, dataExample, thetaH0 = 20)

if (require(ggplot2)) plot(stageResults, nPlanned = c(30), thetaRange = c(0, 100))

plot.TrialDesign Trial Design Plotting

Description

Plots a trial design.

60 plot.TrialDesign

Usage

S3 method for class 'TrialDesign'
plot(x, y, main = NA_character_,

xlab = NA_character_, ylab = NA_character_, type = 1,
palette = "Set1", theta = seq(-1, 1, 0.01), nMax = NA_integer_,
plotPointsEnabled = NA, legendPosition = NA_integer_,
showSource = FALSE, ...)

Arguments

x The trial design, obtained from
getDesignGroupSequential,
getDesignInverseNormal or
getDesignFisher.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 3: creates a ’Stage Levels’ plot
• 4: creates a ’Type One Error Spending’ plot
• 5: creates a ’Power and Early Stopping’ plot
• 6: creates an ’Average Sample Size and Power / Early Stop’ plot
• 7: creates an ’Power’ plot
• 8: creates an ’Early Stopping’ plot
• 9: creates an ’Average Sample Size’ plot

palette The palette, default is "Set1".

theta A vector of theta values.

nMax The maximum sample size.
plotPointsEnabled

If TRUE, additional points will be plotted.
legendPosition

The position of the legend. By default (NA_integer_) the algorithm tries
to find a suitable position. Choose one of the following values to specify the
position manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

plot.TrialDesignPlan 61

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with plot.

... Optional ggplot2 arguments.

Details

Generic function to plot a trial design.

Generic function to plot a trial design.

See Also

plot.TrialDesignSet to compare different designs or design parameters visual.

Examples

design <- getDesignInverseNormal(kMax = 3, alpha = 0.025,
typeOfDesign = "asKD", gammaA = 2,
informationRates = c(0.2, 0.7, 1),
typeBetaSpending = "bsOF")

if (require(ggplot2)) {
plot(design) # default: type = 1

}

plot.TrialDesignPlan
Trial Design Plan Plotting

Description

Plots a trial design plan.

Usage

S3 method for class 'TrialDesignPlan'
plot(x, y, main = NA_character_,

xlab = NA_character_, ylab = NA_character_,
type = ifelse(x$.design$kMax == 1, 5, 1), palette = "Set1",
theta = seq(-1, 1, 0.01), plotPointsEnabled = NA,
legendPosition = NA_integer_, showSource = FALSE, ...)

Arguments

x The trial design plan, obtained from
getSampleSizeMeans,
getSampleSizeRates,
getSampleSizeSurvival,
getPowerMeans,
getPowerRates or
getPowerSurvival.

62 plot.TrialDesignPlan

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 2: creates a ’Boundaries Effect Scale’ plot
• 3: creates a ’Boundaries p Values Scale’ plot
• 4: creates a ’Type One Error Spending’ plot
• 5: creates a ’Sample Size’ or ’Overall Power and Early Stopping’ plot
• 6: creates a ’Number of Events’ or ’Sample Size’ plot
• 7: creates an ’Overall Power’ plot
• 8: creates an ’Overall Early Stopping’ plot
• 9: creates an ’Expected Number of Events’ or ’Expected Sample Size’ plot
• 10: creates a ’Study Duration’ plot
• 11: creates an ’Expected Number of Subjects’ plot
• 12: creates an ’Analysis Times’ plot
• 13: creates a ’Cumulative Distribution Function’ plot
• 14: creates a ’Survival Function’ plot

palette The palette, default is "Set1".

theta A vector of theta values.
plotPointsEnabled

If TRUE, additional points will be plotted.
legendPosition

The position of the legend. By default (NA_integer_) the algorithm tries
to find a suitable position. Choose one of the following values to specify the
position manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with plot.

... Optional ggplot2 arguments.

Details

Generic function to plot all kinds of trial design plans.

plot.TrialDesignSet 63

plot.TrialDesignSet
Trial Design Set Plotting

Description

Plots a trial design set.

Usage

S3 method for class 'TrialDesignSet'
plot(x, y, type = 1L, main = NA_character_,

xlab = NA_character_, ylab = NA_character_, palette = "Set1",
theta = seq(-1, 1, 0.02), nMax = NA_integer_,
plotPointsEnabled = NA, legendPosition = NA_integer_,
showSource = FALSE, ...)

Arguments

x The trial design set, obtained from getDesignSet.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 3: creates a ’Stage Levels’ plot
• 4: creates a ’Type One Error Spending’ plot
• 5: creates a ’Power and Early Stopping’ plot
• 6: creates an ’Average Sample Size and Power / Early Stop’ plot
• 7: creates an ’Power’ plot
• 8: creates an ’Early Stopping’ plot
• 9: creates an ’Average Sample Size’ plot

main The main title.

xlab The x-axis label.

ylab The y-axis label.

palette The palette, default is "Set1".

theta A vector of theta values.

nMax The maximum sample size.
plotPointsEnabled

If TRUE, additional points will be plotted.
legendPosition

The position of the legend. By default (NA_integer_) the algorithm tries
to find a suitable position. Choose one of the following values to specify the
position manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot

64 readDataset

• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource If TRUE, the parameter names of the object will be printed which were used to
create the plot; that may be, e.g., useful to check the values or to create own
plots with plot.

... Optional ggplot2 arguments.

Details

Generic function to plot a trial design set. Is, e.g., useful to compare different designs or design
parameters visual.

Value

Returns a ggplot2 object.

Examples

design <- getDesignInverseNormal(kMax = 3, alpha = 0.025,
typeOfDesign = "asKD", gammaA = 2,
informationRates = c(0.2, 0.7, 1), typeBetaSpending = "bsOF")

Create a set of designs based on the master design defined above
and varied parameter 'gammaA'
designSet <- getDesignSet(design = design, gammaA = 4)

if (require(ggplot2)) plot(designSet, type = 1, legendPosition = 6)

readDataset Read Dataset

Description

Reads a data file and returns it as dataset object.

Usage

readDataset(file, ..., header = TRUE, sep = ",", quote = "\"",
dec = ".", fill = TRUE, comment.char = "",
fileEncoding = "UTF-8")

readDatasets 65

Arguments

file A CSV file (see read.table).

... Further arguments to be passed to coderead.table.

header A logical value indicating whether the file contains the names of the variables
as its first line.

sep The field separator character. Values on each line of the file are separated by
this character. If sep = "," (the default for readDataset) the separator is a
comma.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only considered
for columns read as character, which is all of them unless colClasses is
specified.

dec The character used in the file for decimal points.

fill logical. If TRUE then in case the rows have unequal length, blank fields are
implicitly added.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

fileEncoding character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

readDataset is a wrapper function that uses read.table to read the CSV file into a data
frame, transfers it from long to wide format with reshape and puts the data to getDataset.

Value

Returns a Dataset object.

See Also

• readDatasets for reading multiple datasets,

• writeDataset for writing a single dataset,

• writeDatasets for writing multiple datasets.

readDatasets Read Multiple Datasets

Description

Reads a data file and returns it as a list of dataset objects.

Usage

readDatasets(file, ..., header = TRUE, sep = ",", quote = "\"",
dec = ".", fill = TRUE, comment.char = "",
fileEncoding = "UTF-8")

66 rpact

Arguments

file A CSV file (see read.table).

... Further arguments to be passed to read.table.

header A logical value indicating whether the file contains the names of the variables
as its first line.

sep The field separator character. Values on each line of the file are separated by
this character. If sep = "," (the default for readDatasets) the separator is a
comma.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only considered
for columns read as character, which is all of them unless colClasses is
specified.

dec The character used in the file for decimal points.

fill logical. If TRUE then in case the rows have unequal length, blank fields are
implicitly added.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

fileEncoding character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

Reads a file that was written by writeDatasets before.

Value

Returns a list of Dataset objects.

See Also

• readDataset for reading a single dataset,

• writeDatasets for writing multiple datasets,

• writeDataset for writing a single dataset.

rpact RPACT - Confirmatory Adaptive Clinical Trial Design and Analysis

Description

RPACT (R Package for Adaptive Clinical Trials) is a comprehensive package that enables the design
and analysis of confirmatory adaptive group sequential designs. Particularly, the methods described
in the recent monograph by Wassmer and Brannath (published by Springer, 2016) are implemented.
It also comprises advanced methods for sample size calculations for fixed sample size designs incl.,
e.g., sample size calculation for survival trials with piecewise exponentially distributed survival
times and staggered patients entry.

http://monograph.wassmer.brannath.rpact.com

utilitiesForPiecewiseExponentialDistribution 67

Details

RPACT includes the classical group sequential designs (incl. user spending function approaches)
where the sample sizes per stage (or the time points of interim analysis) cannot be changed in a
data-driven way. Confirmatory adaptive designs explicitly allow for this under control of the Type I
error rate. They are either based on the combination testing or the conditional rejection probability
(CRP) principle. Both are available, for the former the inverse normal combination test and Fisher’s
combination test can be used.

Specific techniques of the adaptive methodology are also available, e.g., overall confidence in-
tervals, overall p-values, and conditional and predictive power assessments. Simulations can be
performed to assess the design characteristics of a (user-defined) sample size recalculation strategy.
Designs are available for trials with continuous, binary, and survival endpoint.

For more information please visit www.rpact.org. If you are interested in professional services
round about the package or need a comprehensive validation documentation to fulfill regulatory
requirements please visit www.rpact.com.

RPACT is developed by

• Gernot Wassmer (gernot.wassmer@rpact.com) and

• Friedrich Pahlke (friedrich.pahlke@rpact.com).

Author(s)

Gernot Wassmer, Friedrich Pahlke

References

Wassmer, G., Brannath, W. (2016) Group Sequential and Confirmatory Adaptive Designs in Clinical
Trials (Springer Series in Pharmaceutical Statistics) <doi:10.1007/978-3-319-32562-0>

See Also

Useful links:

• https://www.rpact.org

• Report bugs at https://bugreport.rpact.org

utilitiesForPiecewiseExponentialDistribution
The Piecewise Exponential Distribution

Description

Distribution function, quantile function and random number generation for the piecewise exponen-
tial distribution.

https://www.rpact.org
https://www.rpact.com
mailto:gernot.wassmer@rpact.com
mailto:friedrich.pahlke@rpact.com
https://doi.org/10.1007/978-3-319-32562-0
https://www.rpact.org
https://bugreport.rpact.org

68 utilitiesForPiecewiseExponentialDistribution

Usage

getPiecewiseExponentialDistribution(time, ...,
piecewiseSurvivalTime = NA_real_, piecewiseLambda = NA_real_,
kappa = 1)

ppwexp(t, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

getPiecewiseExponentialQuantile(quantile, ...,
piecewiseSurvivalTime = NA_real_, piecewiseLambda = NA_real_,
kappa = 1)

qpwexp(q, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

getPiecewiseExponentialRandomNumbers(n, ...,
piecewiseSurvivalTime = NA_real_, piecewiseLambda = NA_real_,
kappa = 1)

rpwexp(n, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

Arguments

... Ensures that all arguments after time are be named and that a warning will be
displayed if unknown arguments are passed.

kappa The kappa value. Is needed for the specification of the Weibull distribution. In
this case, no piecewise definition is possible, i.e., only lambda and kappa need
to be specified. This function is equivalent to pweibull(t, kappa, 1 / lambda) of
the R core system, i.e., the scale parameter is 1 / ’hazard rate’. For example, get-
PiecewiseExponentialDistribution(time = 130, piecewiseLambda = 0.01, kappa
= 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 /0.01) provide the sample
result.

t, time Vector of time values.
s, piecewiseSurvivalTime

Vector of start times defining the "time pieces".
lambda, piecewiseLambda

Vector of lambda values (hazard rates) corresponding to the start times.

q, quantile Vector of quantiles.

n Number of observations.

Details

getPiecewiseExponentialDistribution (short: ppwexp), getPiecewiseExponentialQuantile
(short: qpwexp), and getPiecewiseExponentialRandomNumbers (short: rpwexp) pro-
vide probabilities, quantiles, and random numbers according to a piecewise exponential or a Weibull
distribution. The piecewise definition is performed through a vector of starting times (piecewiseSurvivalTime)
and a vector of hazard rates (piecewiseLambda). You can also use a list that defines the starting
times and piecewise lambdas together and define piecewiseSurvivalTime as this list. The list needs
to have the form, for example, piecewiseSurvivalTime <- list("0 - <6" = 0.025, "6 - <9" = 0.04,
"9 - <15" = 0.015, ">=15" = 0.007) For the Weibull case, you can also specify a shape parameter
kappa in order to calculated probabilities, quantiles, or random numbers. In this case, no piecewise
definition is possible, i.e., only piecewiseLambda and kappa need to be specified.

utilitiesForSurvivalTrials 69

Examples

Calculate probabilties for a range of time values for a
piecewise exponential distribution with hazard rates
0.025, 0.04, 0.015, and 0.007 in the intervals
[0, 6), [6, 9), [9, 15), [15,Inf), respectively,
and re-return the time values:
piecewiseSurvivalTime <- list(

"0 - <6" = 0.025,
"6 - <9" = 0.04,
"9 - <15" = 0.015,
">=15" = 0.01)

y <- getPiecewiseExponentialDistribution(seq(0, 150, 15),
piecewiseSurvivalTime = piecewiseSurvivalTime)

getPiecewiseExponentialQuantile(y,
piecewiseSurvivalTime = piecewiseSurvivalTime)

utilitiesForSurvivalTrials
Survival Helper Functions for Conversion of Pi, Lambda, Median

Description

Functions to convert pi, lambda and median values into each other.

Usage

getLambdaByPi(piValue, eventTime = C_EVENT_TIME_DEFAULT, kappa = 1)

getLambdaByMedian(median, kappa = 1)

getHazardRatioByPi(pi1, pi2, eventTime = C_EVENT_TIME_DEFAULT,
kappa = 1)

getPiByLambda(lambda, eventTime = C_EVENT_TIME_DEFAULT, kappa = 1)

getPiByMedian(median, eventTime = C_EVENT_TIME_DEFAULT, kappa = 1)

getMedianByLambda(lambda, kappa = 1)

getMedianByPi(piValue, eventTime = C_EVENT_TIME_DEFAULT, kappa = 1)

Arguments

piValue, pi1, pi2, lambda, median
Value that shall be converted.

eventTime The assumed time under which the event rates are calculated, default is 12.

kappa The scale parameter of the Weibull distribution, default is 1. The Weibull distri-
bution cannot be used for the piecewise definition of the survival time distribu-
tion.

70 writeDataset

Details

Can be used, e.g., to convert median values into pi or lambda values for usage in getSampleSizeSurvival
or getPowerSurvival.

writeDataset Write Dataset

Description

Writes a dataset to a CSV file.

Usage

writeDataset(dataset, file, ..., append = FALSE, quote = TRUE,
sep = ",", eol = "\n", na = "NA", dec = ".", row.names = TRUE,
col.names = NA, qmethod = "double", fileEncoding = "UTF-8")

Arguments

dataset A dataset.

file The target CSV file.

... Further arguments to be passed to write.table.

append Logical. Only relevant if file is a character string. If TRUE, the output is ap-
pended to the file. If FALSE, any existing file of the name is destroyed.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only considered
for columns read as character, which is all of them unless colClasses is
specified.

sep The field separator character. Values on each line of the file are separated by
this character. If sep = "," (the default for writeDataset) the separator is a
comma.

eol The character(s) to print at the end of each line (row).

na The string to use for missing values in the data.

dec The character used in the file for decimal points.

row.names Either a logical value indicating whether the row names of dataset are to be
written along with dataset, or a character vector of row names to be written.

col.names Either a logical value indicating whether the column names of dataset are to
be written along with dataset, or a character vector of column names to be
written. See the section on ’CSV files’ for the meaning of col.names = NA.

qmethod A character string specifying how to deal with embedded double quote charac-
ters when quoting strings. Must be one of "double" (default in writeDataset)
or "escape".

fileEncoding Character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

writeDatasets 71

Details

writeDataset is a wrapper function that coerces the dataset to a data frame and uses
write.table to write it to a CSV file.

See Also

• writeDatasets for writing multiple datasets,

• readDataset for reading a single dataset,

• readDatasets for reading multiple datasets.

writeDatasets Write Multiple Datasets

Description

Writes a list of datasets to a CSV file.

Usage

writeDatasets(datasets, file, ..., append = FALSE, quote = TRUE,
sep = ",", eol = "\n", na = "NA", dec = ".", row.names = TRUE,
col.names = NA, qmethod = "double", fileEncoding = "UTF-8")

Arguments

datasets A list of datasets.

file The target CSV file.

... Further arguments to be passed to write.table.

append Logical. Only relevant if file is a character string. If TRUE, the output is ap-
pended to the file. If FALSE, any existing file of the name is destroyed.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only considered
for columns read as character, which is all of them unless colClasses is
specified.

sep The field separator character. Values on each line of the file are separated by
this character. If sep = "," (the default for writeDatasets) the separator is a
comma.

eol The character(s) to print at the end of each line (row).

na The string to use for missing values in the data.

dec The character used in the file for decimal points.

row.names Either a logical value indicating whether the row names of dataset are to be
written along with dataset, or a character vector of row names to be written.

col.names Either a logical value indicating whether the column names of dataset are to
be written along with dataset, or a character vector of column names to be
written. See the section on ’CSV files’ for the meaning of col.names = NA.

72 writeDatasets

qmethod A character string specifying how to deal with embedded double quote charac-
ters when quoting strings. Must be one of "double" (default in writeDatasets)
or "escape".

fileEncoding Character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

The format of the CSV file is optimized for usage of readDatasets.

See Also

• writeDataset for writing a single dataset,

• readDatasets for reading multiple datasets,

• readDataset for reading a single dataset.

Index

AccrualTime, 4
AnalysisResults, 9

data.frame, 39, 43, 47, 48
Dataset, 11, 55, 65, 66
DatasetMeans, 10
DatasetRates, 10, 11
DatasetSurvival, 11

getAccrualTime, 3, 46
getAnalysisResults, 8, 54
getConditionalPower, 9
getConditionalRejectionProbabilities,

9
getData, 39, 43, 47
getDataset, 9, 10, 52, 65
getDesignCharacteristics, 12
getDesignFisher, 13, 60
getDesignGroupSequential, 15, 60
getDesignInverseNormal, 17, 60
getDesignSet, 14, 16, 18, 19, 63
getFinalConfidenceInterval, 9
getFinalPValue, 9
getHazardRatioByPi

(utilitiesForSurvivalTrials),
69

getLambdaByMedian
(utilitiesForSurvivalTrials),
69

getLambdaByPi
(utilitiesForSurvivalTrials),
69

getMedianByLambda
(utilitiesForSurvivalTrials),
69

getMedianByPi
(utilitiesForSurvivalTrials),
69

getPiByLambda
(utilitiesForSurvivalTrials),
69

getPiByMedian
(utilitiesForSurvivalTrials),
69

getPiecewiseExponentialDistribution
(utilitiesForPiecewiseExponentialDistribution),
67

getPiecewiseExponentialQuantile
(utilitiesForPiecewiseExponentialDistribution),
67

getPiecewiseExponentialRandomNumbers
(utilitiesForPiecewiseExponentialDistribution),
67

getPiecewiseSurvivalTime, 20
getPowerAndAverageSampleNumber,

22
getPowerMeans, 22, 61
getPowerRates, 24, 61
getPowerSurvival, 26, 61, 70
getRawData, 47, 48
getRepeatedConfidenceIntervals,

9
getRepeatedPValues, 9
getSampleSizeMeans, 15, 17, 30, 61
getSampleSizeRates, 31, 61
getSampleSizeSurvival, 33, 61, 70
getSimulationMeans, 37
getSimulationRates, 41
getSimulationSurvival, 45, 57
getStageResults, 52
getTestActions, 9

PiecewiseSurvivalTime, 21
plot, 55–57, 59, 61, 62, 64
plot.AnalysisResults, 53
plot.Dataset, 55
plot.SimulationResults, 56
plot.StageResults, 58
plot.TrialDesign, 59
plot.TrialDesignPlan, 61
plot.TrialDesignSet, 61, 63
PowerAndAverageSampleNumberResult,

22
ppwexp

(utilitiesForPiecewiseExponentialDistribution),
67

qpwexp

73

74 INDEX

(utilitiesForPiecewiseExponentialDistribution),
67

read.table, 65, 66
readDataset, 64, 66, 71, 72
readDatasets, 65, 65, 71, 72
reshape, 65
rpact, 66
rpact-package (rpact), 66
rpwexp

(utilitiesForPiecewiseExponentialDistribution),
67

SimulationResultsMeans, 39
SimulationResultsRates, 43
SimulationResultsSurvival, 47
StageResults, 53

TrialDesignCharacteristics, 13
TrialDesignFisher, 14
TrialDesignGroupSequential, 16
TrialDesignInverseNormal, 18
TrialDesignPlanMeans, 23, 31
TrialDesignPlanRates, 25, 32
TrialDesignPlanSurvival, 28, 35
TrialDesignSet, 19

utilitiesForPiecewiseExponentialDistribution,
67

utilitiesForSurvivalTrials, 69

Weibull, 20, 27, 33, 46
write.table, 70, 71
writeDataset, 65, 66, 70, 71, 72
writeDatasets, 65, 66, 71, 71

	getAccrualTime
	getAnalysisResults
	getDataset
	getDesignCharacteristics
	getDesignFisher
	getDesignGroupSequential
	getDesignInverseNormal
	getDesignSet
	getPiecewiseSurvivalTime
	getPowerAndAverageSampleNumber
	getPowerMeans
	getPowerRates
	getPowerSurvival
	getSampleSizeMeans
	getSampleSizeRates
	getSampleSizeSurvival
	getSimulationMeans
	getSimulationRates
	getSimulationSurvival
	getStageResults
	plot.AnalysisResults
	plot.Dataset
	plot.SimulationResults
	plot.StageResults
	plot.TrialDesign
	plot.TrialDesignPlan
	plot.TrialDesignSet
	readDataset
	readDatasets
	rpact
	utilitiesForPiecewiseExponentialDistribution
	utilitiesForSurvivalTrials
	writeDataset
	writeDatasets
	Index

